MATH 141 ExaM #3 KEY (SPRING 2022)

la Use L’Hopital’s rule:
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1b The limit does not exist, and so the sequence diverges:
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1c Take the limit of the logarithm of the function and use L’Hopital’s rule:

In(1 + 4/n)> " (2 iy /(L +4/n) - (—4/n2))

lim a, = exp (2 lim = exp

= exp (2 7}1320 T 4/n) = exp(8) = €°.

2 Reindex to obtain
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3 The nth partial sum is

Sp=(Mm3—-Inl)+ (In4—In2)+ - -+ [In(n+1) —In(n — 1)] + [In(n + 2) — Inn]
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and so
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That is, the series diverges.
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4 Find the smallest integer value of n for which 10# <

1 - 1
10n* 10,000

= n*> 1000,



and 6 is the first integer for which 6* > 1000, estimation with the first five terms will suffice:

—(-1)" (=D 1 1 1 1 1
Z 1004 "~ Z 100t 10 + 160 810 * 2560 6250
has absolute error less than 1074.

5a For all n > 1 we have
4 4 4
< < < —,
243" — 3"n — 3"
and since Y 4/3" is a convergent geometric series, we conclude by the Direct Comparison Test
that the given series converges.
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5b Since
.4n
lim — = o0,
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the series diverges by the Divergence Test.
5¢ For all n > 1 we have
o< tan"'n _ m |
- n?2 T 2n?

and since Y 1/n? is a convergent p-series, it follows that Y 7/2n? is likewise convergent, and
therefore the given series converges by the Direct Comparison Test.
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the series converges by the Ratio Test.

5e Since
Inn
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n
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the series diverges by the Divergence Test.



5f Since
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the series converges by the Ratio Test.

6a Since (1/n°*) is a decreasing sequence of nonnegative values such that 1/n°* — 0 as

n — oo, the series converges by the Alternating Series Test. Since > 1/n°* is a convergent
p-series, the given series is also absolutely convergent.

6b Let X represent the given series

i (=1)"
“—~ Inn '
Since n > Inn (we've encountered a theorem that states this), there is some N such that
n > Inn for all n > N, and so % < ﬁ for n > N. Now, since the harmonic series Z% is
known to diverge, by the Direct Comparison Test the series ) ﬁ must also diverge. This
means the series 3 is not absolutely convergent. However, the sequence b,, = ﬁ is decreasing

with b, — 0 as n — o0, and so by the Alternating Series Test the series > converges. Therefore
> is conditionally convergent.



