MaATH 141 ExaM #4 KEY (SPRING 2019)

la Apply Ratio Test:
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Series converges if |z| < 1, so interval of convergence contains (—1,1). Check endpoints.

At 2 = —1: Series becomes > n~'/3, which is a divergent p-series.

At 2 = 1: Series becomes " (—1)"n~'/3, which can be shown to converge by the Alternating
Series Test.

Therefore the original series has interval of convergence (—1,1].

1b Apply the Ratio Test, using L’Hopital’s Rule to find the limit:
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Series converges if |z + 2| < 2, so interval of convergence contains (—4,0). Check endpoints.
At x = —4: Series becomes ) (—1)"/Inn, which converges by the Alternating Series Test.
At x = 0: Series becomes Y 1/Inn, and since 1/Ilnn > 1/n for all n > 2, and the series

> 1/n is a divergent p-series, the Direct Comparison Test implies that the series diverges.
Interval of convergence is therefore [—4,0).

1c Again apply the Ratio Test:
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The series converges if |5z — 4| < 1, so interval of convergence contains ( ) Check endpoints.
At x = £: Series becomes Y _(—1)"/n?, which converges by the Alternating Series Test.
At x = 1: Series becomes Y 1/n?, a convergent p-series.

Interval of convergence is therefore [%, 1}.

2 Using the formula for a convergent geometric series,
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Apply the Ratio Test:
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Series converges if x%/16 < 1, so (—2,2) is contained in the interval of convergence. Since the
series diverges at the endpoints, (—2,2) is the interval of convergence.



3 We have
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Since 0.25/24 < 107°, the estimate
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will have an absolute error less than 107°.

0.23 0.24 n 0.2°
3 8 15

5 Radius of convergence is R = 1, with expansion
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6 Length is
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7 Use the identity tan® +1 = sec? to find that z +1=y? ory = Vo + 1. For —n/2 <t <0
travel is from right to left in the curve below, whereupon the curve stops at the point (0, 1)
when ¢ = 0, and then for 0 < ¢ < /2 travel is from left to right (and the curve is retraced).
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The curve is concave up for ¢ values such that d?y/dz* > 0, or t € (0,1).



9 Let f(#) =2+sind, so f'(#) = cosf. Slope is
f'(m/4) sin(m/4) + f(x/4) cos(m/4) _ 75~
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10 One loop is trace for 6 € [0, /5], so the area is
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