Math 141 Exam \#4 Key (Spring 2019)

1a Apply Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{\sqrt[3]{n+1}} \cdot \frac{\sqrt[3]{n}}{(-1)^{n} x^{n}}\right|=|x| \lim _{n \rightarrow \infty} \sqrt[3]{\frac{n}{n+1}}=|x|
$$

Series converges if $|x|<1$, so interval of convergence contains $(-1,1)$. Check endpoints.
At $x=-1$: Series becomes $\sum n^{-1 / 3}$, which is a divergent p-series.
At $x=1$: Series becomes $\sum(-1)^{n} n^{-1 / 3}$, which can be shown to converge by the Alternating Series Test.

Therefore the original series has interval of convergence $(-1,1]$.

1b Apply the Ratio Test, using L'Hôpital's Rule to find the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{2^{n+1} \ln (n+1)} \cdot \frac{2^{n} \ln n}{(x+2)^{n}}\right|=\frac{|x+2|}{2} \lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)} \stackrel{\text { LR }}{=} \frac{|x+2|}{2} \lim _{n \rightarrow \infty} \frac{n+1}{n}=\frac{|x+2|}{2} .
$$

Series converges if $|x+2|<2$, so interval of convergence contains $(-4,0)$. Check endpoints.
At $x=-4$: Series becomes $\sum(-1)^{n} / \ln n$, which converges by the Alternating Series Test.
At $x=0$: Series becomes $\sum 1 / \ln n$, and since $1 / \ln n>1 / n$ for all $n \geq 2$, and the series $\sum 1 / n$ is a divergent p-series, the Direct Comparison Test implies that the series diverges.

Interval of convergence is therefore $[-4,0)$.

1c Again apply the Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(5 x-4)^{n+1}}{(n+1)^{3}} \cdot \frac{n^{3}}{(5 x-4)^{n}}\right|=|5 x-4| \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{3}=|5 x-4|
$$

The series converges if $|5 x-4|<1$, so interval of convergence contains $\left(\frac{3}{5}, 1\right)$. Check endpoints.
At $x=\frac{3}{5}$: Series becomes $\sum(-1)^{n} / n^{3}$, which converges by the Alternating Series Test.
At $x=1$: Series becomes $\sum 1 / n^{3}$, a convergent p-series.
Interval of convergence is therefore $\left[\frac{3}{5}, 1\right]$.

2 Using the formula for a convergent geometric series,

$$
f(x)=\frac{x^{2}}{16} \cdot \frac{1}{1-\left(-x^{4} / 16\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{2^{4 n+4}}
$$

Apply the Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{4 n+6}}{2^{4 n+8}} \cdot \frac{2^{4 n+4}}{(-1)^{n} x^{4 n+2}}\right|=\frac{x^{4}}{16}
$$

Series converges if $x^{4} / 16<1$, so $(-2,2)$ is contained in the interval of convergence. Since the series diverges at the endpoints, $(-2,2)$ is the interval of convergence.

3 We have

$$
\begin{aligned}
\int_{0}^{0.2} x \ln \left(1+x^{2}\right) d x & =\int_{0}^{0.2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n+1}}{n} d x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \int_{0}^{0.2} x^{n+1} d x \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(0.2)^{n+2}}{n(n+2)}=\frac{0.2^{3}}{3}-\frac{0.2^{4}}{8}+\frac{0.2^{5}}{15}-\frac{0.2^{6}}{24}+\cdots
\end{aligned}
$$

Since $0.2^{6} / 24<10^{-5}$, the estimate

$$
\int_{0}^{0.2} x \ln \left(1+x^{2}\right) d x \approx \frac{0.2^{3}}{3}-\frac{0.2^{4}}{8}+\frac{0.2^{5}}{15}
$$

will have an absolute error less than 10^{-5}.

5 Radius of convergence is $R=1$, with expansion

$$
1-\frac{1}{4} x-\sum_{n=2}^{\infty} \frac{3 \cdot 7 \cdots \cdots(4 n-5)}{4^{n} \cdot n!} x^{n}
$$

6 Length is

$$
\int_{0}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x=\int_{0}^{\pi / 4} \sec x d x=[\ln |\sec x+\tan x|]_{0}^{\pi / 4}=\ln (\sqrt{2}+1)
$$

7 Use the identity $\tan ^{2}+1=\sec ^{2}$ to find that $x+1=y^{2}$, or $y=\sqrt{x+1}$. For $-\pi / 2<t<0$ travel is from right to left in the curve below, whereupon the curve stops at the point $(0,1)$ when $t=0$, and then for $0<t<\pi / 2$ travel is from left to right (and the curve is retraced).

8 We have

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{1+1 / t}{1-1 / t}=\frac{t+1}{t-1}
$$

and

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{-2 /(t-1)^{2}}{1-1 / t}=-\frac{2 t}{(t-1)^{3}}
$$

The curve is concave up for t values such that $d^{2} y / d x^{2}>0$, or $t \in(0,1)$.

9 Let $f(\theta)=2+\sin \theta$, so $f^{\prime}(\theta)=\cos \theta$. Slope is

$$
\frac{f^{\prime}(\pi / 4) \sin (\pi / 4)+f(\pi / 4) \cos (\pi / 4)}{f^{\prime}(\pi / 4) \cos (\pi / 4)-f(\pi / 4) \sin (\pi / 4)}=\frac{\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\left(2+\frac{1}{\sqrt{2}}\right) \cdot \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}-\left(2+\frac{1}{\sqrt{2}}\right) \cdot \frac{1}{\sqrt{2}}}=-\frac{\sqrt{2}}{2}-1 .
$$

10 One loop is trace for $\theta \in[0, \pi / 5]$, so the area is

$$
\int_{0}^{\pi / 5} \frac{1}{2}(2 \sin 5 \theta)^{2} d \theta=\int_{0}^{\pi / 5}(1-\cos 10 \theta) d \theta=\frac{\pi}{5}-\frac{1}{10} \sin (2 \pi)=\frac{\pi}{5}
$$

