
Math 141 Exam #4 Key (Spring 2019)

1a Apply Ratio Test:
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Series converges if |x| < 1, so interval of convergence contains (−1, 1). Check endpoints.
At x = −1: Series becomes

∑
n−1/3, which is a divergent p-series.

At x = 1: Series becomes
∑

(−1)nn−1/3, which can be shown to converge by the Alternating
Series Test.

Therefore the original series has interval of convergence (−1, 1].

1b Apply the Ratio Test, using L’Hôpital’s Rule to find the limit:
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Series converges if |x+ 2| < 2, so interval of convergence contains (−4, 0). Check endpoints.
At x = −4: Series becomes

∑
(−1)n/ lnn, which converges by the Alternating Series Test.

At x = 0: Series becomes
∑

1/ lnn, and since 1/ lnn > 1/n for all n ≥ 2, and the series∑
1/n is a divergent p-series, the Direct Comparison Test implies that the series diverges.
Interval of convergence is therefore [−4, 0).

1c Again apply the Ratio Test:

lim
n→∞
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The series converges if |5x−4| < 1, so interval of convergence contains
(
3
5
, 1
)
. Check endpoints.

At x = 3
5
: Series becomes

∑
(−1)n/n3, which converges by the Alternating Series Test.

At x = 1: Series becomes
∑

1/n3, a convergent p-series.
Interval of convergence is therefore

[
3
5
, 1
]
.

2 Using the formula for a convergent geometric series,
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Apply the Ratio Test:
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Series converges if x4/16 < 1, so (−2, 2) is contained in the interval of convergence. Since the
series diverges at the endpoints, (−2, 2) is the interval of convergence.
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3 We have∫ 0.2
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Since 0.26/24 < 10−5, the estimate∫ 0.2

0
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will have an absolute error less than 10−5.

5 Radius of convergence is R = 1, with expansion
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6 Length is∫ π/4
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7 Use the identity tan2 +1 = sec2 to find that x+ 1 = y2, or y =
√
x+ 1. For −π/2 < t < 0

travel is from right to left in the curve below, whereupon the curve stops at the point (0, 1)
when t = 0, and then for 0 < t < π/2 travel is from left to right (and the curve is retraced).
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The curve is concave up for t values such that d2y/dx2 > 0, or t ∈ (0, 1).
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9 Let f(θ) = 2 + sin θ, so f ′(θ) = cos θ. Slope is

f ′(π/4) sin(π/4) + f(π/4) cos(π/4)
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10 One loop is trace for θ ∈ [0, π/5], so the area is∫ π/5

0

1

2
(2 sin 5θ)2 dθ =

∫ π/5

0

(1− cos 10θ) dθ =
π

5
− 1

10
sin(2π) =

π

5
.


