MATH 141 ExAaM #3 KEY (SPRING 2019)

la Use L’Hopital’s rule:
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2 For the first few values of n > 1 is appears that the sequence is decreasing, so we conjecture
that a,.1 < a, for all n > 1. Since
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holds for any n > 1, and 0 < 3 is true, we conclude that a,,; < a, is true for all n > 1, and
therefore the sequence (a,) is indeed decreasing. We also find that a,, — —1 as n — oo, so in
fact a,, € [—1,0] for all n > 1, and hence (a,) is bounded.

3 Reindex to obtain
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4 The nth partial sum is
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That is, the series diverges.

5 By the Integral Test the series converges if and only if the integral
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converges. Since
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and the limit at right goes to —oo for ¢ < 1, 400 for ¢ > 1, and In1 = 0 for ¢ = 1, we conclude
that the series converges if and only if ¢ = 1.

6a For all n > 1 we have
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and since Y 4/3" is a convergent geometric series, we conclude by the Direct Comparison Test
that the given series converges.
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6b Since

the series diverges by the Divergence Test.

6¢c For all n > 1 we have
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and since Y 1/n? is a convergent p-series, it follows that Y m/2n? is likewise convergent, and
therefore the given series converges by the Direct Comparison Test.
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the series converges by the Ratio Test.
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the series diverges by the Divergence Test.



6f Since
1-3.5---[2 1)—1 2n — 1)!
b= lim | ™| = pipg (L35 P D =1 (@n—)
n—oo | @, n—00 2(n+1)—1]! 1-3:5---(2n—1)
2 1) -1 2 1
:hmu_ i n+ =0,

= 1m -——-
n—»00 2n(2n + 1) n—oo 4n2 4 2n

the series converges by the Ratio Test.

7a Since (1/n°*) is a decreasing sequence of nonnegative values such that 1/n
n — 00, the series converges by the Alternating Series Test.

p-series, the given series is also absolutely convergent.

7b Since
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the series diverges by the Divergence Test.
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