MATH 141 EXAM #3 KEY (SPRING 2018)

la Use L’Hopital’s rule:
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2 Since —7/2 < tan"!n < 7/2 for any integer n, we have
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for all n, and since
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the Squeeze Theorem implies that
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4 The nth partial sum is
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That is, the series diverges.

5 Find the smallest integer value of n for which 2n4 < Since
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and 4* < 500 while 5* > 500, the estimation
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has absolute error less than 1073.

6a For all n > 1 we have
4 4 4
< < < —,
243" — 3"n — 3"
and since Y 4/3" is a convergent geometric series, we conclude by the Direct Comparison Test
that the given series converges.
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the series diverges by the Divergence Test.
6¢c For all n > 1 we have
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and since Y 1/n? is a convergent p-series, it follows that Y 7/2n? is likewise convergent, and
therefore the given series converges by the Direct Comparison Test.
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the series converges by the Ratio Test.
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the series diverges by the Divergence Test.
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the series converges by the Ratio Test.

7a Since (1/n°*) is a decreasing sequence of nonnegative values such that 1/n
n — 00, the series converges by the Alternating Series Test.

p-series, the given series is also absolutely convergent.

7b Since
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the series diverges by the Divergence Test.
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Since > 1/n%* is a convergent



