MATH 141 EXAM #1 KEY (SPRING 2018)

1a From $y^4 = 4x^2$ we obtain $|y| = \sqrt[4]{4x^2} = \sqrt{2|x|}$. Now, $f_1(x) = \sqrt{2x}$ for $x \in [0, \infty)$, $f_2(x) = \sqrt{-2x}$ for $x \in (-\infty, 0]$, $f_3(x) = -\sqrt{-2x}$ for $x \in (-\infty, 0]$, and $f_4(x) = -\sqrt{2x}$ for $x \in [0, \infty)$.

1b Let $y = f_1(x)$, so that $y = \sqrt{2x}$ for $x \ge 0$. Solving for x yields $x = y^2/2$, and thus $f_1^{-1}(y) = y^2/2$ for $y \ge 0$. Replacing y with x (a formal maneuver) then gives $f_1^{-1}(x) = x^2/2$ for $x \ge 0$. Thus $y = f_1^{-1}(x)$ is written $y = x^2/2$ (valid for $x \ge 0$, though this information is not asked for). Similarly: $f_2^{-1}(x) = -x^2/2$, $f_3^{-1}(x) = -x^2/2$, and $f_4^{-1}(x) = x^2/2$.

2 We have $f'(x) = 1 - \sin x$, so f'(x) > 0 for all $x \in (0, \pi/2) \cup (\pi/2, 2\pi)$, with $f'(\pi/2) = 0$. This is enough to show that f is increasing on $(0, 2\pi)$, hence is one-to-one on $(0, 2\pi)$, and therefore has on inverse on $(0, 2\pi)$. Now, since $f(\pi) = -1$, by the Inverse Function Theorem we have

$$(f^{-1})'(-1) = (f^{-1})'(f(\pi)) = \frac{1}{f'(\pi)} = \frac{1}{1 - \sin \pi} = 1.$$

3a Quotient rule:

$$y' = \frac{(\ln x + 1)(1/x) - (\ln x)(1/x)}{(\ln x + 1)^2} = \frac{1}{x(\ln x + 1)^2}.$$

3b Chain rule: $f'(x) = \cos(\cos e^x) \cdot (-\sin e^x) \cdot e^x$.

3c We have

$$g'(x) = \frac{d}{dx} \left(e^{(x-1)\ln(\cot x)} \right) = e^{(x-1)\ln(\cot x)} \frac{d}{dx} \left[(x-1)\ln(\cot x) \right]$$
$$= (\cot x)^{x-1} \left[-\frac{(x-1)\csc^2 x}{\cot x} + \ln(\cot x) \right].$$

3d We have

$$h'(t) = \frac{d}{dt} \left(e^{t^{1/2} \ln t} \right) = e^{t^{1/2} \ln t} \frac{d}{dt} (t^{1/2} \ln t) = t^{(t^{1/2})} \left(t^{-1/2} + \frac{1}{2} t^{-1/2} \ln t \right).$$

3e Use algebra to find that

$$y = \frac{4\ln(1 - x^3)}{\ln 3}.$$

Now,

$$y' = \frac{12x^2}{(x^3 - 1)\ln 3}.$$

3f By the Chain Rule:

$$\varphi'(u) = \frac{1}{1 + (4u - 4)^2} \cdot (4u - 4)' = \frac{4}{1 + (4u - 4)^2}.$$

3g $y' = 2x \cosh^3(5x) + 15x^2 \cosh^2(5x) \sinh(5x)$.

4 Here $y'(x) = 2e^x$, so slope of the tangent line at $x = \ln 6$ is $y'(\ln 6) = 2e^{\ln 6} = 12$. Also the tangent line contains the point $(\ln 6, 20)$ since $y(\ln 6) = 2e^{\ln 6} + 8 = 20$. Equation of the line:

$$y = 12x + (20 - 12\ln 6).$$

5a Let $u = x^6$, so

$$\int x^5 e^{x^6} dx = \int e^u du = \frac{1}{6} e^u + c = \frac{1}{6} e^{x^6} + c.$$

5b Let $u = \ln(\ln x)$, so $du = \frac{1}{x \ln x} dx$, and the integral becomes

$$\int \frac{1}{u} du = \ln|u| + c = \ln|\ln(\ln x)| + c.$$

5c Let $u = \cos x$, so $du = -\sin x \, dx = -\frac{1}{\csc x} dx$. Integral becomes

$$-\int e^{u}du = -e^{u} + c = -e^{\cos x} + c.$$

6a Letting $u = e^{t/2} + 1$, so integral becomes

$$\int_{1/e+1}^{e+1} \frac{2}{u} du = 2 \ln|u| \Big|_{1/e+1}^{e+1} = 2 \ln\left(\frac{e+1}{e^{-1}+1}\right) = 2.$$

6b Use a given formula:

$$\frac{1}{2} \int_0^{3/2} \frac{1}{\sqrt{9 - x^2}} dx = \frac{1}{2} \left[\sin^{-1} \left(\frac{x}{3} \right) \right]_0^{3/2} = \frac{\pi}{12}.$$

6c Let $u = \cosh 4x$, so integral becomes

$$\frac{1}{4} \int_{1}^{\cosh 4} u^3 \, du = \frac{1}{4} \left[\frac{1}{4} u^4 \right]_{1}^{\cosh 4} = \frac{\cosh^4 4 - 1}{16}.$$

7 We have

$$\lim_{x\to\infty}e^{\frac{\ln(x^2+2)}{\ln x}}=\exp\biggl(\lim_{x\to\infty}\frac{\ln(x^2+2)}{\ln x}\biggr)\stackrel{\text{lr}}{=}\exp\biggl(\lim_{x\to\infty}\frac{2x/(x^2+2)}{1/x}\biggr)=\exp\biggl(\lim_{x\to\infty}\frac{2x^2}{x^2+2}\biggr)=e^2.$$