MATH 141 ExAM #3 KEY (SPRING 2017)

la Recurrence relation:

Api1 = Gn +3, a3 =6.

1b Explicit formula:
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Since - — 0 as n — oo, we conclude that
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by the Squeeze Theorem.

2b Using L’Hopital’s Rule where indicated, we find that
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From this we see that
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5 We have
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Since the integral converges, the series also converges by the Integral Test.
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6 We'll use the Limit Comparison Test, comparing the given series with » >, % We have
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and so since Y > % is known to diverge, the given series must also diverge.
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and so the series converges by the Ratio Test.

8 The Ratio Test will turn out to be inconclusive, so we use the Limit Comparison Test and
compare with the divergent series > %, using L’Hopital’s Rule where indicated:
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Thus the series diverges by the Limit Comparison Test.

9 We may write the series as
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The Ratio Test will be inconclusive, so we try the Integral Test. With partial fraction decom-
position we find that
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Since the integral converges, we conclude that the series also converges.



10 For n > 2 we have
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with b, — 0 as n — oco. Is the sequence (b,)22 ; eventually nonincreasing, meaning b, 11 < b,
for all sufficiently large n? We have
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& 0<4n®—4n—13 & 4n(n—1) > 13.
Clearly 4n(n—1) > 13 holds for all n > 3, and so b,41 < b, holds for all n > 3. That is, (b,)5°
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is indeed eventually nonincreasing. Therefore, by the Alternating Series Test, we conclude that

the series converges.




