MATH 141 ExaM #2 KEY (SPRING 2017)

1 The curves intersect where = 0,£2v/2. By symmetry (both curves are given by odd
functions) the area bounded in the 3rd quadrant is the same as the area bounded in the 1st
quadrant. The total area A is thus twice the area in the 1st quadrant:
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and so, letting u = 22 4 1, we have
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2 Letu= tan_l y2 and v = Y, SO that v’ = 2y and v = %y2:
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3 Let u=xsinz and v' = cosx, so v’ = sinx+ x cosz and v = sinx. Now, using the identity
>z = 1(1 — cos 2z), we have

where we make the substitution ¢ = y*

sin

/:csina:cos:cdx = zsin’r — /(sin2x+xcos:csinx)dx,

and so
1
Q/xsinxcosxdx:xSiHQm—/sirdem:xsian—5/(1—0052:13)dx
. 9 1 L.
=zsinx — -z — =sin2zx | +c
2 2
Finally,
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Note: the reduction formula on the back of the exam could also be used to determine f sin? z dz,
though the answer will look a little different.
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4 Letting u = cos 3, so —du = sin 8 df3, we have
/sin3 Bcos® fdf = /C085 BsinBdp — /0057 Bsin fdp
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5 Set g = 6tanf, so dg = 6sec?fdfh. Since ¢ = 6 implies § = 7/4 and ¢ = 6v/3 implies
6 = 7/3, we obtain:
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(Note: the formula for [ sin”z dz on the back of the exam helps.)

6a Making the substitution 3tan @ = x, so dv = 3sec? § df, we have
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6b We have
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7a We have
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SO
12=A(r+3)+ B(r—4)=(A+ B)r+ (3A — 4B),
which yields the system of equations
A+ B=0
3A—4B =12
The solution to the system is (A, B) = (1—72, —1—72), SO
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which yields the system of equations
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The solution to the system is (A4, B,C) = (6,—5,—6), so
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8a With partial fraction decomposition we obtain
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So the integral converges.
8b First, letting u = —2?/2 so that du = —x dx,
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*°/2 is an odd function, we have
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Now, since ze
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provided the two integrals at right converge. Now,
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Ka-Boom!!! The integral at right in (1) diverges. (Note: evaluating the integral in this problem
in the usual way would turn up a real value as the answer, but this would be wrong.)




