MATH 141 ExaM #3 KEY (SPRING 2016)

la Recurrence relation:

anr = (=1)"(Vlan| +1)%, a1 =1.

1b Explicit formula:
an = (—1)""n?  n>1.

2 We have
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lim a, = lim A = lim (3 + 3n_1) = 3.
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3 Use L’Hopital’s Rule along the way to get

lim a, = lim exp(In(1/n)Y/") = exp( lim ln(l/”)) - exp< lim @) == 1.
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4 We have
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5 Partial fraction decomposition:
1 A n B
(k+p)(k+p+1) k+p k+p+1

and so (A+ B)k+ (Ap+ Bp+ A) = 1. This gives A+ B =0 and Ap+ Bp+ A = 1, and finally
A=1and B=—1. So,
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= 1=Ak+p+1)+ B(k+p),
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From this we see that
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6 We have
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where m — e =~ 0.42 shows that 0 < m — e < 1, and so the series is a divergent p-series.

7 Letting u = Inz, we have
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Since the integral converges, the series >~ m also converges by the Integral Test.

8 We'll use the Limit Comparison Test, comparing the given series with Y >, % We have
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and so since Y >~ L is known to diverge, the series Y > | ﬁﬁ must also diverge.

9 We have
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and so the series converges by the Ratio Test.

10 Using L'Hopital’s Rule in the end (steps omitted), we have
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and so the series converges by the Root Test.

11 Note that
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which shows that
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also. Hence the series diverges by the Divergence Test.
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