MaTH 141 ExaMm #1 KEY (SPRING 2015)

1 A little trial-and-error readily gives us
g(1)=1°-1°+2(1) = 2,
and so the Inverse Function Theorem, along with ¢'(x) = 5z* — 322 + 2, implies
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But can we use the theorem? Note that ¢’(1) =4 > 0. Since ¢’ is continuous and ¢'(1) > 0, we
in fact must have ¢’(z) > 0 for all x in some open interval I containing 1, meaning g is strictly
increasing on I, and hence ¢ is one-to-one on I. Therefore g : I — g([) has an inverse function
g~' : g(I) — I which, along with the differentiability of g on I, allows us to use the Inverse

Function Theorem in the manner above.
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2a fz)= e?* +3

2b Dom(g) = (0,00), and for all z > 0 we have

g(z) = 2™ = exp <1n (:Uln(xs)» = exp(In(z°) In(z)) = exp(5In*(z)),
and thus

' (x) = exp(5In(z)) - (510%(x))" = 2. 10In(x) _ 102" In(x)
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2c¢ For x such that sinxz > 0 we have

h(z) = (sinz)™* = exp(In((sinz)"™*)) = exp(tanz - In(sin z)),

and thus
B (z) = exp(tanz - In(sinz))- (tan x - In(sinz))’

= exp(tanx - In(sinz))- (tan:v 220 L seca In(sin a:))
= (sinz)"™"* (1 + In(sin z)* x)
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3¢ Let u = 2%, so by the Substitution Rule we replace 27 dz with %du to get
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4a Let u = In(z), so when z = 1 we have u = In(1) = 0, and when x = 3e we have u = In(3e).
Now, by the Substitution Rule we replace %dx with du to get
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4b We have

SC 1 /2 510 . 5
5/2 mdz = 5[5 tan <§>} = §[tan (\/5) — tan (1)] =5

5 For  near 0 but not equal to 0, for instance for z € I = (—1,0) U (0, 1), we have
z—0 3x

The functions f(x) = In(z+cosz) and g(z) = 3z are differentiable on I, with f(z)/g(z) — 0/0
as © — 0. Since
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lim (z + cos 2)'/%* = exp [In(z + cos 2)'/*] = exp {M} :
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by L’Hopital’s Rule it follows that
I f(x) In(z + cos z)
i
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as well. Now, since exp(z) is a continuous function,
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lim ( + cos z)'/3 = }:1{)% exp [W] = exp Llclg(l) W] = exp (%) = el/3,

z—0



6 Using the Chain Rule yields
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7 Make the substitution v = y/x, and then w = cosh u:

tanh 2 2 : h COSh21 cog
/ an \/_ 2tanhudu-2/ o udu:Q/ —dw = 2[In |w|] h2
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