1 A little trial-and-error readily gives us

$$
g(1)=1^{5}-1^{3}+2(1)=2,
$$

and so the Inverse Function Theorem, along with $g^{\prime}(x)=5 x^{4}-3 x^{2}+2$, implies

$$
\left(g^{-1}\right)^{\prime}(2)=\frac{1}{g^{\prime}(1)}=\frac{1}{4}
$$

But can we use the theorem? Note that $g^{\prime}(1)=4>0$. Since g^{\prime} is continuous and $g^{\prime}(1)>0$, we in fact must have $g^{\prime}(x)>0$ for all x in some open interval I containing 1 , meaning g is strictly increasing on I, and hence g is one-to-one on I. Therefore $g: I \rightarrow g(I)$ has an inverse function $g^{-1}: g(I) \rightarrow I$ which, along with the differentiability of g on I, allows us to use the Inverse Function Theorem in the manner above.

2a $f^{\prime}(x)=\frac{2 e^{2 x}}{e^{2 x}+3}$

2b $\operatorname{Dom}(g)=(0, \infty)$, and for all $x>0$ we have

$$
g(x)=x^{\ln \left(x^{5}\right)}=\exp \left(\ln \left(x^{\ln \left(x^{5}\right)}\right)\right)=\exp \left(\ln \left(x^{5}\right) \ln (x)\right)=\exp \left(5 \ln ^{2}(x)\right)
$$

and thus

$$
g^{\prime}(x)=\exp \left(5 \ln ^{2}(x)\right) \cdot\left(5 \ln ^{2}(x)\right)^{\prime}=x^{\ln \left(x^{5}\right)} \cdot \frac{10 \ln (x)}{x}=\frac{10 x^{\ln \left(x^{5}\right)} \ln (x)}{x}
$$

2c For x such that $\sin x>0$ we have

$$
h(x)=(\sin x)^{\tan x}=\exp \left(\ln \left((\sin x)^{\tan x}\right)\right)=\exp (\tan x \cdot \ln (\sin x)),
$$

and thus

$$
\begin{aligned}
h^{\prime}(x) & =\exp (\tan x \cdot \ln (\sin x)) \cdot(\tan x \cdot \ln (\sin x))^{\prime} \\
& =\exp (\tan x \cdot \ln (\sin x)) \cdot\left(\tan x \cdot \frac{\cos x}{\sin x}+\sec ^{2} x \cdot \ln (\sin x)\right) \\
& =(\sin x)^{\tan x}\left(1+\ln (\sin x)^{\sec ^{2} x}\right)
\end{aligned}
$$

2d $\quad k^{\prime}(x)=\frac{7}{\left(4-x^{5}\right) \ln (3)} \cdot\left(4-x^{5}\right)^{\prime}=-\frac{35 x^{4}}{\left(4-x^{5}\right) \ln (3)}$

2e $\quad \ell^{\prime}(x)=\frac{1}{e^{-2 x} \sqrt{\left(e^{-2 x}\right)^{2}-1}} \cdot\left(e^{-2 x}\right)^{\prime}=\frac{-2 e^{-2 x}}{e^{-2 x} \sqrt{e^{-4 x}-1}}=-\frac{2}{\sqrt{e^{-4 x}-1}}$

2f $p^{\prime}(x)=-\frac{1}{1+(\sqrt{x})^{2}} \cdot(\sqrt{x})^{\prime}=-\frac{1}{1+x} \cdot \frac{1}{2 \sqrt{x}}=-\frac{1}{2 \sqrt{x}(1+x)}$

3a $\int\left(3 e^{-8 x}-8 e^{11 x}\right) d x=-\frac{3}{8} e^{-8 x}-\frac{8}{11} e^{11 x}+c$

3b $\int \frac{9}{4-9 y} d y=-\ln |4-9 y|+c$

3c Let $u=x^{8}$, so by the Substitution Rule we replace $x^{7} d x$ with $\frac{1}{8} d u$ to get

$$
\int x^{7} 8^{x^{8}} d x=\frac{1}{8} \int 8^{u} d u=\frac{1}{8} \cdot \frac{8^{u}}{\ln 8}+c=\frac{8^{x^{8}}}{8 \ln 8}+c .
$$

4a Let $u=\ln (x)$, so when $x=1$ we have $u=\ln (1)=0$, and when $x=3 e$ we have $u=\ln (3 e)$. Now, by the Substitution Rule we replace $\frac{1}{x} d x$ with $d u$ to get

$$
\int_{0}^{\ln (3 e)} \frac{e^{u}}{2} d u=\left[\frac{1}{2} e^{u}\right]_{0}^{\ln (3 e)}=\frac{1}{2}\left(e^{\ln (3 e)}-e^{0}\right)=\frac{3 e-1}{2} .
$$

4b We have

$$
5 \int_{2}^{2 \sqrt{3}} \frac{1}{z^{2}+2^{2}} d z=5\left[\frac{1}{2} \tan ^{-1}\left(\frac{z}{2}\right)\right]_{2}^{2 \sqrt{3}}=\frac{5}{2}\left[\tan ^{-1}(\sqrt{3})-\tan ^{-1}(1)\right]=\frac{5}{2}\left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\frac{5 \pi}{24}
$$

5 For x near 0 but not equal to 0 , for instance for $x \in I=\left(-\frac{1}{4}, 0\right) \cup\left(0, \frac{1}{4}\right)$, we have

$$
\lim _{x \rightarrow 0}(x+\cos x)^{1 / 3 x}=\exp \left[\ln (x+\cos x)^{1 / 3 x}\right]=\exp \left[\frac{\ln (x+\cos x)}{3 x}\right]
$$

The functions $f(x)=\ln (x+\cos x)$ and $g(x)=3 x$ are differentiable on I, with $f(x) / g(x) \rightarrow 0 / 0$ as $x \rightarrow 0$. Since

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{1-\sin x}{3(x+\cos x)}=\frac{1}{3}
$$

by L'Hôpital's Rule it follows that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{\ln (x+\cos x)}{3 x}=\frac{1}{3}
$$

as well. Now, $\operatorname{since} \exp (x)$ is a continuous function,

$$
\lim _{x \rightarrow 0}(x+\cos x)^{1 / 3 x}=\lim _{x \rightarrow 0} \exp \left[\frac{\ln (x+\cos x)}{3 x}\right]=\exp \left[\lim _{x \rightarrow 0} \frac{\ln (x+\cos x)}{3 x}\right]=\exp \left(\frac{1}{3}\right)=e^{1 / 3} .
$$

6 Using the Chain Rule yields

$$
f^{\prime}(x)=\frac{1}{2}(\tanh 5 x)^{-1 / 2} \cdot \operatorname{sech}^{2} 5 x \cdot 5=\frac{5 \operatorname{sech}^{2} 5 x}{2 \sqrt{\tanh 5 x}} .
$$

7 Make the substitution $u=\sqrt{x}$, and then $w=\cosh u$:

$$
\begin{aligned}
\int_{1}^{4} \frac{\tanh \sqrt{x}}{\sqrt{x}} d x & =\int_{1}^{2} 2 \tanh u d u=2 \int_{1}^{2} \frac{\sinh u}{\cosh u} d u=2 \int_{\cosh 1}^{\cosh 2} \frac{1}{w} d w=2[\ln |w|]_{\cosh 1}^{\cosh 2} \\
& =2 \ln \left(\frac{\cosh 2}{\cosh 1}\right)=2 \ln \left(\frac{e^{2}+e^{-1}}{2} \cdot \frac{2}{e+e^{-1}}\right)=2 \ln \left(\frac{e^{4}+1}{e^{4}+e^{2}}\right) \\
& =2 \ln \left(\frac{e^{4}+1}{e^{2}+1}\right)-4
\end{aligned}
$$

