
Math 141 Exam #4 Key (Spring 2014)

1a Applying the Ratio Test,

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(x+ 1)k+1

8k+1
· 8k

(x+ 1)k

∣∣∣∣ = lim
k→∞

|x+ 1|
8

=
|x+ 1|

8
,

so the series converges if |x + 1|/8 < 1, implying −8 < x + 1 < 8 and thus −9 < x < 7. It
remains to test the endpoints.

When x = 7 the series becomes,

lim
k→∞

(
x+ 1

8

)k

= lim
k→∞

(
7 + 1

8

)k

= lim
k→∞

(1) = 1 6= 0,

so the series diverges by the Divergence Test.
When x = −9 the series becomes,

lim
k→∞

(
x+ 1

8

)k

= lim
k→∞

(
−9 + 1

8

)k

= lim
k→∞

(−1)k 6= 0,

so again the series diverges. Therefore the interval of convergence is (−9, 7), and the radius of
convergence is | − 9− 7|/2 = 8.

1b Applying the Ratio Test,

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(2x+ 3)k+1

6(k + 1)
· 6k

(2x+ 3)k

∣∣∣∣ = lim
k→∞

k|2x+ 3|
k + 1

= |2x+ 3|,

so the series converges if −1 < 2x+ 3 < 1, implying −2 < x < −1.
When x = −2 the series becomes

∞∑
k=1

(−1)k

6k
,

which converges by the Alternating Series Test. When x = −1 the series becomes
∞∑
k=1

1

6k
,

which diverges since
∞∑
k=1

1

k

diverges. Interval of convergence is [−2,−1), radius of convergence is 1
2
.

1c Clearly the series converges when x = −2. Assuming x 6= −2, we can employ the Ratio
Test with

ak = (−1)k
(x+ 2)k

k · 2k

to obtain

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(−1)k+1(x+ 2)k+1

(k + 1) · 2k+1
· k · 2k

(−1)k(x+ 2)k

∣∣∣∣



2

= lim
k→∞

∣∣∣∣(−1)(x+ 2)

2(k + 1)
· k

1

∣∣∣∣ = lim
k→∞

k

2k + 2
|x+ 2| = 1

2
|x+ 2|.

Thus the series converges if 1
2
|x+ 2| < 1, which implies |x+ 2| < 2 and thus −4 < x < 0. The

Ratio Test is inconclusive when x = −4 or x = 0, so we analyze these endpoint separately.
When x = −4 the series becomes

∞∑
k=0

(−1)k(−2)k

k · 2k
=
∞∑
k=0

2k

k · 2k
=
∞∑
k=0

1

k
,

which is the harmonic series and therefore diverges.
When x = 0 the series becomes

∞∑
k=0

(−1)k2k

k · 2k
=
∞∑
k=0

(−1)k
1

k
,

which is an alternating series
∑

(−1)kbk with bk = 1/k. Since limk→∞ bk = 0 and

bk+1 =
1

k + 1
<

1

k
= bk

for all k, by the Alternating Series Test this series converges.
Therefore the series converges on the interval (−4, 0], and the radius of convergence is

R = 1
2
|0− (−4)| = 2.

2 We manipulate to obtain

h(x) = 2 · 1

1− (−3x)
= 2

∞∑
k=0

(−3x)k =
∞∑
k=0

2(−3x)k,

which converges if and only if | − 3x| < 1, so the interval of convergence is
(
−1

3
, 1
3

)
.

3 Formally, the function represented by the series is given by

f(x) =
1

1− (
√
x+ 4)

= − 1

3 +
√
x
.

The series converges if and only if |
√
x + 4| < 1, or equivalently −5 <

√
x < −3. But there

exists no x ∈ R which satisfies this inequality, and so there is no interval of convergence!

4a We have

3x− 33

3!
x3 +

35

5!
x5 − 37

7!
x7 + · · · = 3x− 9

2
x3 +

625

24
x5 − 243

560
x7 + · · ·

4b
∞∑
k=0

(−1)k(3x)2k+1

(2k + 1)!
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4c Use the Ratio Test to find that the interval of convergence is (−∞,∞).

5 We have

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!

for all x ∈ (−∞,∞), and so

sin(x2) =
∞∑
k=0

(−1)k(x2)2k+1

(2k + 1)!
=
∞∑
k=0

(−1)kx4k+2

(2k + 1)!
(1)

for all −∞ < x <∞. In particular the series at right in (1) converges on (−∞,∞), and so∫ [ ∞∑
k=0

(−1)kx4k+2

(2k + 1)!

]
dx =

∞∑
k=0

(−1)kx4k+3

(4k + 3)(2k + 1)!
+ c

for all x ∈ (−∞,∞) and arbitrary constant c. Thus, by the Fundamental Theorem of Calculus,∫ 0.2

0

sin(x2) dx =

∫ 0.2

0

[
∞∑
k=0

(−1)kx4k+2

(2k + 1)!

]
dx =

[
∞∑
k=0

(−1)kx4k+3

(4k + 3)(2k + 1)!

]0.2
0

=
∞∑
k=0

(−1)k(0.2)4k+3

(4k + 3)(2k + 1)!
−
∞∑
k=0

(−1)k(0)4k+3

(4k + 3)(2k + 1)!

=
∞∑
k=0

(−1)k
0.24k+3

(4k + 3)(2k + 1)!

We have arrived at an alternating series
∑

(−1)kbk with

bk =
0.24k+3

(4k + 3)(2k + 1)!

for k ≥ 0. Evaluating the first few bk values,

b0 = 0.23/(3 · 1!) ≈ 2.6667× 10−3

b1 = 0.27/(7 · 3!) ≈ 3.0476× 10−7

b2 = 0.211/(11 · 5!) ≈ 1.5515× 10−11

By the Alternating Series Estimation Theorem the approximation
∞∑
k=0

(−1)k
0.24k+3

(4k + 3)(2k + 1)!
≈ b0 − b1 =

0.23

3
− 0.27

42

will have an absolute error that is less than b2 ≈ 1.5515 × 10−11 < 10−10. Therefore the
approximation ∫ 0.2

0

sin(x2) dx ≈ 0.23

3
− 0.27

42
≈ 0.002666

has an absolute error less than 10−10.
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6 From x = 3
√
t+ 4 comes t = (x− 4)3. Putting this into y = 5t− 3 gives y = 5(x− 4)3 − 3.

That is, the function f is given by

f(x) = 5(x− 4)3 − 3.

From t ∈ [0, 27] we find that x ∈ [4, 7], so the domain of f is [4, 7].

7 (2, 4π/3), (2,−2π/3), (−2, π/3), among other possibilities.

8 We have r = f(θ) with f(θ) = 8 cos θ. The slope m of the curve at (4, 5π/6) is

m =
f ′(5π/6) sin(5π/6) + f(5π/6) cos(5π/6)

f ′(5π/6) cos(5π/6)− f(5π/6) sin(5π/6)

=
−8 sin(5π/6) sin(5π/6) + 8 cos(5π/6) cos(5π/6)

−8 sin(5π/6) cos(5π/6)− 8 cos(5π/6) sin(5π/6)

=
sin2(5π/6)− cos2(5π/6)

2 cos(5π/6) sin(5π/6)
=

(1/2)2 − (−
√

3/2)2

2(1/2)(−
√

3/2)
=

1√
3

9 Here r = f(θ) with f(θ) = 3 + 5 cos θ. The curve is generated for θ ∈ [0, 2π), so we find all
0 ≤ θ < 2π for which

f ′(θ) sin θ + f(θ) cos θ = 0,

which gives
−5 sin θ sin θ + cos θ(3 + 5 cos θ) = 0.

Since sin2 θ = 1− cos2 θ, we get

10 cos2 θ + 3 cos θ − 5 = 0,

and so

cos θ =
−3±

√
209

20
≈ −0.8728, 0.5728

by the quadratic formula. From cos θ = −0.8728 we obtain θ ≈ 2.63, 3.65. From cos θ = 0.5728
we obtain θ ≈ 0.96, 5.32. Solution set in [0, 2π) is thus

{0.96, 2.63, 3.65, 5.32},
to the nearest hundredth.


