MATH 141 ExaM #3 KEY (SPRING 2014)
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1b First we evaluate
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where “LR” indicates an application of L’Hopital’s Rule.

Now, consider the subsequence of {a,}>; that consists of the even-indexed terms, which
can be denoted by {a,, }3, with nj, = 2k for k > 1. Then, using the fact that lim,, ., n'/" = 1,
we have
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Next, consider the subsequence consisting of the odd-indexed terms, which can be denoted
by {an, }32, with ny =2k — 1 for k > 1. Then we have
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Since {a,} has two subsequences with different limits, the sequence {a,} itself cannot
converge. That is, {a,} diverges.

2 Starting by reindexing, we have

_ B < 1/1\"  1/8 1
;2 3k 22 3(k+1) 22 39—3k §§<8> :1_1/8:?

3 For each n > 1 we have
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4a Since
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the series diverges by the Divergence Test.
4b Letting u = —222, we have
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so the integral
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converges, and therefore the series converges by the Integral Test.

4c Since
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the series diverges by the Ratio Test.
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the series converges by the Root Test.
4e For each k£ > 1 we have
sin” k 1 1

0< < -
— k\/E — ]{f\/E k3/2

and since Y oo, k7%/% is a convergent p-series, it follows that
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converges by the Direct Comparison Test.
4f For each k > 1 we have
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and since Y ;- k™% is a convergent p-series, it follows that

converges by the Direct Comparison Test.

5a Since In k and k£ are monotone increasing functions for k£ > 2, it follows that
1
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is monotone decreasing (i.e. nonincreasing) for k£ > 2. Also
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and so by the Alternating Series Test the series converges.
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the series diverges by the Divergence Test.

0,

5b Since

lim
k—o0




