MATH 141 EXAM #1 KEY (SPRING 2011)

- 1. The relationship is $f(x) = y \Leftrightarrow f^{-1}(y) = x$, so suppose f(x) = y. Then $y = \sqrt{x+3} \Rightarrow y^2 = x+3 \Rightarrow x = y^2 3$, and since $f^{-1}(y) = x$ we obtain $f^{-1}(y) = y^2 3$. (Note: the condition $x \ge 3$ implies that $y \ge 0$, which is to say we have $Dom(f^{-1}) = [0, \infty)$ and not all reals.) Replacing y with x gives $f^{-1}(x) = x^2 3$.
- **2.** We're not able to get f^{-1} directly, so we must employ the theorem as follows: "If f is one-to-one and differentiable on an open interval I, $a \in I$, and f(a) = b, then $(f^{-1})'(b) = 1/f'(a)$ if $f'(a) \neq 0$." First we must find a for which f(a) = 3, which requires solving $a^3 + a + 1 = 3$. This is a knotty equation to solve analytically but one obvious solution is a = 1, and actually this is the *only* real solution since f (which is differentiable everywhere) is seen to be one-to-one by examining its derivative: $f'(x) = 3x^2 + 1 > 0$ for all $x \in \mathbb{R}$, so f must be strictly increasing on \mathbb{R} . Now, since f(1) = 3, we have $(f^{-1})'(3) = 1/f'(1) = 1/4$.
- **3.** If u is a differentiable function of x, then $\frac{d}{dx}(\ln|u|) = \frac{1}{u}\frac{du}{dx}$ wherever $u(x) \neq 0$. (This formula is important because it provides the basis for logarithmic differentiation.) So $\frac{d}{dx}(\ln|x^2-1|) = \frac{1}{x^2-1}\frac{d}{dx}(x^2-1) = \frac{2x}{x^2-1}$ wherever $x^2 \neq 1$, so the result is valid on $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$.
- **4.** $f'(x) = (2\cos 2x)e^{\sin 2x}$, so $f'(\pi/4) = (2\cos \frac{\pi}{2})e^{\sin(\pi/2)} = 0$.
- **5a.** Substitution: let $u = \sqrt{x}$, so $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ gives $2 du = \frac{1}{\sqrt{x}} dx$, and therefore $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int 2e^u du = 2e^u + C = 2e^{\sqrt{x}} + C$.
- **5b.** $\int_{-1}^{1} 10^x dx = \left[\frac{1}{\ln 10} 10^x \right]_{-1}^{1} = \frac{1}{\ln 10} \left(10 10^{-1} \right) = \frac{9.9}{\ln 10}.$
- **5c.** $\int \frac{5}{\sqrt{7^2 x^2}} dx = 5\sin^{-1}\left(\frac{x}{7}\right) + C.$
- **6.** $\frac{d}{dx}(\ln f(x)) = \frac{d}{dx}\left(\ln(\cos x)^{\tan x}\right) \Rightarrow \frac{f'(x)}{f(x)} = \frac{d}{dx}\left(\tan x \cdot \ln(\cos x)\right) \Rightarrow \frac{f'(x)}{f(x)} = \ln(\cos x) \cdot \sec^2 x \tan^2 x \Rightarrow f'(x) = (\cos x)^{\tan x}\left(\sec^2 x \cdot \ln(\cos x) \tan^2 x\right).$ Keep in mind that this result is valid only for $x \in \text{Dom}(f)$ where $f(x) \neq 0$.
- 7a. $y' = 4^{-x} \cos x (\ln 4)4^{-x} \sin x$.
- **7b.** Note $y = \pi \ln(x^3 + 1)$, so $y' = \frac{\pi}{x^3 + 1} \cdot (3x^2) = \frac{3\pi x^2}{x^3 + 1}$.
- 7c. $y' = \frac{4}{(x^2 1)\ln 3} \cdot \frac{d}{dx}(x^2 1) = \frac{8x}{(x^2 1)\ln 3}$.

7d.
$$f'(z) = \frac{1}{1 + (2z^2 - 4)^2} \cdot \frac{d}{dz} (2z^2 - 4) = \frac{4z}{4z^4 - 16z^2 + 17}$$
.

- 8. $\lim_{x \to 0^+} x^{20x} = \lim_{x \to 0^+} \exp(\ln x^{20x}) = \exp\left(\lim_{x \to 0^+} 20x \ln x\right) = \exp\left(\lim_{x \to 0^+} \frac{20 \ln x}{1/x}\right) = \exp\left(\lim_{x \to 0^+} \frac{(20 \ln x)'}{(1/x)'}\right) = \exp\left(\lim_{x \to 0^+} \frac{20/x}{-1/x^2}\right) = \exp\left(\lim_{x \to 0^+} \frac{20x}{-1/x^2}\right) = \exp\left(\lim_{x \to 0^+} \frac{20x$
- **9a.** Apply integration by parts twice. For the first round let $u(x) = x^2$ and $v'(x) = e^{4x}$, so u'(x) = 2x and $v(x) = \frac{1}{4}e^{4x}$, and we obtain $\int x^2 e^{4x} dx = \frac{x^2}{4}e^{4x} \int \frac{2x}{4}e^{4x} dx = \frac{x^2}{4}e^{4x} \frac{1}{2}\int xe^{4x} dx$. For the second round let u(x) = x and $v'(x) = e^{4x}$, so u'(x) = 1 and $v(x) = \frac{1}{4}e^{4x}$, and we get $\int xe^{4x} dx = \frac{x}{4}e^{4x} \int \frac{1}{4}e^{4x} dx = \frac{x^2}{4}e^{4x} \int \frac{1}{4}e^{4x} dx = \frac{x^2}{4}e^{4x} \int \frac{1}{4}e^{4x} dx = \frac{x^2}{4}e^{4x} \int \frac{2x}{4}e^{4x} dx = \frac{x^2}{4}e^{4x} \int \frac{2x}{$
- **9b.** Let u(x) = x, $v'(x) = \cos 2x$, so u'(x) = 1, $v(x) = \frac{1}{2}\sin 2x$ and integration by parts yields $\int_0^{\pi/2} x \cos 2x \, dx = \left[\frac{x}{2}\sin 2x\right]_0^{\pi/2} \frac{1}{2}\int_0^{\pi/2} \sin 2x \, dx = 0 \frac{1}{2}\left[-\frac{1}{2}\cos 2x\right]_0^{\pi/2} = \frac{1}{4}(\cos \pi \cos 0) = -\frac{1}{2}.$