
Math 141 Exam #4 Key (Fall 2021)

1a This would be the 2nd-order Taylor polynomial:

p2(x) = 2 +
1

4
(x− 4)− 1

64
(x− 4)2.

1b
√
3.88 ≈ p2(3.88) = 1.969775.

2 For f(x) =
√
1 + x we find that p1(x) = 1 + x/2. By a theorem, certainly for |x| < 1, we

find that the remainder is R1(x), where

|R1(x)| ≤ M · |x− a|2

2!

for someM such that |f ′′(ξ)| ≤ M for all ξ between a and x. Let a = 0, and fix x ∈ [−0.12, 0.14].
For all ξ between 0 and x we have

|f ′′(ξ)| =
∣∣∣∣−1

4
(1 + ξ)−3/2

∣∣∣∣ = 1

4(1 + ξ)3/2
≤ 1

4(1− 0.12)3/2
= 0.3028,

so we can let M = 0.3028. Therefore a suitable bound on the error term is

|R1(x)| ≤
0.3028x2

2
≤ 0.3028(0.14)3/2

2
= 0.0030

for all x ∈ [−0.12, 0.14].

3a Ratio Test: for any x,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)2(x+ 3)n+1

(n+ 2)!
· (n+ 1)!

n2(x+ 3)n

∣∣∣∣ = |x+ 3| lim
n→∞

n2 + 2n+ 1

n3 + 2n2
= 0

and so the series converges on (−∞,∞).

3b Ratio Test: for any x,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 6x
√
n√

n+ 1

∣∣∣∣ = 6|x| lim
n→∞

√
n

n+ 1
= 6|x|,

and so the series converges at least on (−1
6
, 1
6
). When x = 1

6
series becomes

∑
1√
n
, a divergent

p-series. When x = −1
6
series becomes

∑ (−1)n√
n
, which converges by the Alternating Series Test.

Interval of convergence is [−1
6
, 1
6
).

3c Ratio Test: for any x,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(x− 2)n2

3(n+ 1)2

∣∣∣∣ = |x− 2|
3

,

and so the series converges at least on (−1, 5). When x = −1 series becomes
∑

1
n2 , a convergent

p-series. When x = 5 series becomes
∑ (−1)n

n2 , which converges by the Alternating Series Test
(or just note that the series is absolutely convergent). Interval of convergence is [−1, 5].



2

4 Use the given Maclaurin series for ln(1 + x):

f(x) =
1

2
ln(1− x2) =

1

2

∞∑
n=1

(−1)n+1(−x2)n

n
= −

∞∑
n=1

x2n

2n

for −1 < −x2 ≤ 1, or |x| < 1. Interval of convergence is (−1, 1).

5 1 +
3

2
x− 3

8
x2 +

5

16
x3 + · · · .

6 Using given Maclaurin series limit becomes

lim
x→0

(
1 + x+

x2

2
+

x3

6
+

x4

24
+ · · ·

)
− 1− x

x2 − x4

3
+

x6

5
+ · · ·

= lim
x→0

1

2
+

x

6
+

x2

24
+ · · ·

1− x2

3
+

x4

5
+ · · ·

=
1

2
.

7 Using the Maclaurin series for the sine function:∫ 1

0

sin
√
xdx =

∫ 1

0

[
∞∑
n=0

(−1)nxn+1/2

(2n+ 1)!

]
dx =

∞∑
n=0

[
(−1)n

(2n+ 1)!

∫ 1

0

xn+1/2dx

]

=
∞∑
n=0

(−1)n

(2n+ 1)!(n+ 3/2)
=

∞∑
n=0

(−1)nbn,

where

bn =
1

(2n+ 1)!(n+ 3/2)
.

We find the lowest n such that bn < 10−4. This turns out to be b3 =
1

22,680
. Thus we make the

approximation ∫ 1

0

sin
√
xdx ≈

2∑
n=0

(−1)nbn =
2

3
− 1

15
+

1

420
= 0.60238.

8 Use the identity 1 + tan2 t = sec2 t to get 1 + y2 = x2.

9 Write equation at x2 + y2 − 8x = 0, which then becomes the polar equation

r2 − 8r cos θ = 0.

Now, factoring gives r(r − 8 cos θ) = 0, so either r = 0 or r = 8 cos θ. But r = 0 merely keeps
us at the origin, regardless of the value of θ. The other option, r = 8 cos θ, is a curve that also
includes the origin, and thus will produce the entire circle. If θ = 0 we have r = 8 cos 0 = 8.
We look for the smallest θ > 0 which returns us to (r, θ) = (8, 0). The first positive θ value that
places us 8 units from the origin again is θ = π, which results in r = −8. The points (8, 0) and
(−8, π) are equivalent polar coordinates: they both are located at (x, y) = (8, 0). This means
that we’re back where we started, and so the entire circle is traced exactly once for θ ∈ [0, π].


