1a Use L'Hôpital's rule:

$$
\lim _{n \rightarrow \infty} n \sin \frac{\pi}{n}=\lim _{n \rightarrow \infty} \frac{\sin (\pi / n)}{1 / n} \stackrel{\text { LR }}{=} \lim _{n \rightarrow \infty} \frac{\left(-\pi / n^{2}\right) \cos (\pi / n)}{-1 / n^{2}}=\lim _{n \rightarrow \infty} \pi \cos \frac{\pi}{n}=\pi \cos 0=\pi
$$

1b We have

$$
\lim _{n \rightarrow \infty}\left(n-\sqrt{n^{2}-1}\right)=\lim _{n \rightarrow \infty} \frac{\left(n-\sqrt{n^{2}-1}\right)\left(n+\sqrt{n^{2}-1}\right)}{n+\sqrt{n^{2}-1}}=\lim _{n \rightarrow \infty} \frac{1}{n+\sqrt{n^{2}-1}}=0 .
$$

2 The problem is that $\sin n$ converges to no particular value as $n \rightarrow \infty$, so we contrive to eliminate it in some fashion. Since $-1 \leq \sin n \leq 1$ for all n, it follows that

$$
-\frac{3 n^{2}+2 n+1}{4 n^{3}+n} \leq a_{n} \leq \frac{3 n^{2}+2 n+1}{4 n^{3}+n}
$$

for all $n \geq 1$. Then, observing that

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+2 n+1}{4 n^{3}+n}=\lim _{n \rightarrow \infty}\left(-\frac{3 n^{2}+2 n+1}{4 n^{3}+n}\right)=0
$$

the Squeeze Theorem implies that $\lim _{n \rightarrow \infty} a_{n}=0$.

3 Reindex to obtain

$$
\sum_{n=1}^{\infty} \frac{6}{4^{n}}=\sum_{n=0}^{\infty} \frac{6}{4^{n+1}}=\frac{6}{4} \sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}=\frac{3}{2} \cdot \frac{1}{1-1 / 4}=2
$$

4 The nth partial sum is

$$
\begin{aligned}
s_{n} & =(\ln 2-\ln 1)+(\ln 3-\ln 2)+\cdots+[\ln n-\ln (n-1)]+[\ln (n+1)-\ln n] \\
& =-\ln 1+\ln (n+1)=\ln (n+1)
\end{aligned}
$$

and so

$$
\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \ln (n+1)=\infty
$$

That is, the series diverges.

5 Find the smallest integer value of n for which $\frac{1}{2 n^{4}}<\frac{1}{1000}$. Since

$$
\frac{1}{2 n^{4}}<\frac{1}{1000} \Rightarrow n^{4}>500
$$

and $4^{4}<500$ while $5^{4}>500$, the estimation

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{4}} \approx \sum_{n=1}^{4} \frac{(-1)^{n}}{2 n^{4}}=-\frac{1}{2}+\frac{1}{32}-\frac{1}{162}+\frac{1}{512}
$$

has absolute error less than 10^{-3}.

6a For all $n \geq 1$ we have

$$
0<\frac{4}{2+3^{n} n} \leq \frac{4}{3^{n} n} \leq \frac{4}{3^{n}}
$$

and since $\sum 4 / 3^{n}$ is a convergent geometric series, we conclude by the Direct Comparison Test that the given series converges.

6b Since

$$
\lim _{n \rightarrow \infty} \frac{4^{n}}{n^{2}}=+\infty
$$

the series diverges by the Divergence Test.

6c Use the Limit Comparison Test, comparing with, say, $\sum n^{-7 / 6}$. Since

$$
L=\lim _{n \rightarrow \infty} \frac{\frac{\ln n}{n^{4 / 3}}}{n^{-7 / 6}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1 / 6}} \stackrel{\text { LR }}{=} \lim _{n \rightarrow \infty} \frac{n^{-1}}{\frac{1}{6} n^{-5 / 6}}=\lim _{n \rightarrow \infty} \frac{6}{\sqrt[6]{n}}=0,
$$

and the series $\sum n^{-7 / 6}$ is a convergent p-series, the LCT implies that the given series converges also.

6d Since

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{2^{n} n!}\right|=2 \lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}}=2 \lim _{n \rightarrow \infty} \exp \left(n \cdot \ln \frac{n}{n+1}\right) \\
& =2 \exp \left(\lim _{n \rightarrow \infty} \frac{\ln n-\ln (n+1)}{1 / n}\right) \stackrel{\text { LR }}{=} 2 \exp \left(\frac{1 / n-1 /(n+1)}{-1 / n^{2}}\right) \\
& =2 \exp \left(-\lim _{n \rightarrow \infty} \frac{n}{n+1}\right)=2 \exp (-1)=\frac{2}{e}<1,
\end{aligned}
$$

the series converges by the Ratio Test.

6e Since

$$
\lim _{n \rightarrow \infty} n^{-1 / n}=\lim _{n \rightarrow \infty} \exp \left(-\frac{\ln n}{n}\right)=\exp (0)=1 \neq 0
$$

the series diverges by the Divergence Test.

6 f Because the harmonic series $\sum n^{-1}$ is known to diverge and

$$
L=\lim _{n \rightarrow \infty} \frac{\frac{\pi}{2}-\tan ^{-1} n}{\frac{1}{n}} \stackrel{\text { LR }}{=} \lim _{n \rightarrow \infty} \frac{-\frac{1}{n^{2}+1}}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1 \in(0, \infty)
$$

the Limit Comparison Test implies that the given series also diverges.

7a Since $\left(1 / n^{5 / 4}\right)$ is a decreasing sequence of nonnegative values such that $1 / n^{5 / 4} \rightarrow 0$ as $n \rightarrow \infty$, the series converges by the Alternating Series Test. Since $\sum 1 / n^{5 / 4}$ is a convergent p-series, the given series is also absolutely convergent.

7b The series is $\sum a_{n}$ with $a_{n}=(-1)^{n+1} /(\sqrt{n}+6)$. Now,

$$
L=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{n^{-1 / 2}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n}+6}=1 \in(0, \infty)
$$

and since $\sum n^{-1 / 2}$ is a divergent p-series, the Limit Comparison Test implies that the series $\sum\left|a_{n}\right|$ diverges, and therefore the given series $\sum a_{n}$ is not absolutely convergent. However, because the sequence

$$
b_{n}=\frac{1}{\sqrt{n}+6}, \quad n \geq 0
$$

is a decreasing sequence of positive numbers such that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, the Alternating Series Test concludes that $\sum a_{n}$ converges, and therefore $\sum a_{n}$ is conditionally convergent.

