MaTH 141 ExaM #3 KEY (FALL 2020)

la Use L’Hopital’s rule:
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2 The problem is that sinn converges to no particular value as n — oo, so we contrive to
eliminate it in some fashion. Since —1 < sinn < 1 for all n, it follows that
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for all n > 1. Then, observing that
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the Squeeze Theorem implies that lim,, ,. a, = 0.

3 Reindex to obtain
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4 'The nth partial sum is

sp=(Mm2—-Inl)+ (In3—-In2)+---+[Inn—In(n —1)] + [In(n + 1) — Inn|
=—Inl+In(n+1)=In(n+1),

and so
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That is, the series diverges.

5 Find the smallest integer value of n for which 2n4 < Since
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and 4* < 500 while 5* > 500, the estimation
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has absolute error less than 1073.

6a For all n > 1 we have
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and since Y 4/3" is a convergent geometric series, we conclude by the Direct Comparison Test
that the given series converges.
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6b Since
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the series diverges by the Divergence Test.

6¢c Use the Limit Comparison Test, comparing with, say, > n~7/%. Since
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and the series > n~7/0 is a convergent p-series, the LCT implies that the given series converges
also.

6d Since
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the series converges by the Ratio Test.

6e Since
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the series diverges by the Divergence Test.



6f Because the harmonic series Y n~! is known to diverge and
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the Limit Comparison Test implies that the given series also diverges.

7a Since (1/n°/*) is a decreasing sequence of nonnegative values such that 1/n%* — 0 as

n — 0o, the series converges by the Alternating Series Test. Since > 1/n°* is a convergent
p-series, the given series is also absolutely convergent.

Tb The series is > a, with a, = (=1)""'/(/n + 6). Now,
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and since > n~'/2 is a divergent p-series, the Limit Comparison Test implies that the series

> lan| diverges, and therefore the given series Y a, is not absolutely convergent. However,
because the sequence

=1¢€ (0,00),
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is a decreasing sequence of positive numbers such that b, — 0 as n — oo, the Alternating
Series Test concludes that > a, converges, and therefore > a,, is conditionally convergent.



