
Math 141 Exam #4 Key (Fall 2019)

1 Let f(x) =
√
x, and find the 3rd-order Taylor polynomial with center 9:

p3(x) = f(9) + f ′(9)(x− 9) +
f ′′(9)

2!
(x− 9)2 +

f ′′′(9)

3!
(x− 9)3

= 3 +
x− 9

6
− (x− 9)2

216
+

(x− 9)3

3888
.

Now,
√

9.3 = f(9.3) ≈ p3(9.3) = 3 +
0.3

6
− 0.32

216
+

0.33

3888
≈ 3.049589.

2a Apply Ratio Test:

lim
n→∞

∣∣∣∣22(n+1)xn+1

(n+ 1)2
· n2

22nxn

∣∣∣∣ = |x| lim
n→∞

4n2

(n+ 1)2
= 4|x|.

Series converges if |x| < 1/4, so interval of convergence contains
(
− 1

4
, 1
4

)
. Check endpoints.

At x = 1/4: series becomes
∑

1/n2, a convergent p-series. At x = −1/4: series becomes∑
(−1)n/n2, which converges by the Alternating Series Test.
Interval of convergence is

[
− 1

4
, 1
4

]
.

2b Ratio Test:

lim
n→∞

∣∣∣∣ (x+ 1)n+1

(n+ 1) · 6n+1
· n · 6n

(x+ 1)n

∣∣∣∣ = |x+ 1| lim
n→∞

n

6n+ 6
=
|x+ 1|

6
.

Series converges if |x+ 1| < 6, so interval of convergence contains (−7, 5). Check endpoints.
At x = 5 series becomes

∑
1/n, which diverges. At x = −7 series becomes

∑
(−1)n/n,

which converges by the Alternating Series Test.
Interval of convergence is

[
− 7, 5).

2c Ratio Test:

lim

∣∣∣∣(n+ 1)!(x− 3)n+1

n!(x− 3)n

∣∣∣∣ = lim
n→∞

(n+ 1)|x− 3| =

{
∞, x 6= 3

0, x = 3.

The series only converges at {3}.

3 Using the formula for a convergent geometric series,

f(x) = 2x · 1

1− x4
= 2x

∞∑
n=0

x4n =
∞∑
n=0

2x4n+1.

Apply the Ratio Test:

lim
n→∞

∣∣∣∣2x4(n+1)+1

2x4n+1

∣∣∣∣ = 2x4.
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Series converges if 2x4 < 1, so
(
− 1/ 4

√
2, 1/ 4
√

2
)

is contained in the interval of convergence.

Since the series diverges at the endpoints,
(
− 2−1/4, 2−1/4

)
is the interval of convergence.

4 Binomial series:

(1 + x)1/2 =
∞∑
n=0

(
1/2

n

)
xn = 1 +

1

2
x− 1

8
x2 +

1

16
x3 + · · · ,

with interval of convergence (−1, 1).

5 We have

lim
x→0

1−
(

1− x2

2
+
x4

24
− · · ·

)
1 + x−

(
1 + x+

x2

2
+
x3

6
+ · · ·

) = lim
x→0

x2

2
− x4

24
+ · · ·

−x
2

2
− x3

6
− · · ·

= lim
x→0

1

2
− x2

24
+ · · ·

−1

2
− x

6
− · · ·

= −1.

6 From the table provided we have ex =
∑∞

n=0 x
n/n! for all x ∈ (−∞,∞), and so

e−x
2

=
∞∑
n=0

(−x2)n

n!
=
∞∑
n=0

(−1)n

n!
x2n

for all x. Now, ∫ ( ∞∑
n=0

(−1)n

n!
x2n

)
dx =

∞∑
n=0

(−1)n

n!(2n+ 1)
x2n+1 + c

for all x and arbitrary constant c. Thus, by the Fundamental Theorem of Calculus,∫ 1/3

0

e−x
2

dx =

∫ 1/3

0

(
∞∑
n=0

(−1)n

n!
x2n

)
dx =

[
∞∑
n=0

(−1)n

n!(2n+ 1)
x2n+1

]1/3
0

=
∞∑
n=0

(−1)n

n!(2n+ 1)

(
1

3

)2n+1

.

We have arrived at an alternating series
∑

(−1)nbn with

bn =
1

n!(2n+ 1)

(
1

3

)2n+1

for n ≥ 0. The first few bn values are

b0 = 1
3
, b1 = 1

81
, b2 = 1

2430
> 10−4, b3 = 1

91,854
< 10−4,

so by the Alternating Series Estimation Theorem the approximation
∞∑
n=0

(−1)n

n!(2n+ 1)

(
1

3

)2n+1

≈ b0 − b1 + b2 ≈ 0.321399

will have an absolute error that is less than b3 < 10−4. Hence the approximation∫ 1/3

0

e−x
2

dx ≈ 1

3
− 1

81
+

1

2430
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has an absolute error less than 10−4.

7a Setting x = f(t) = 3
√
t8 − 8 and y = g(t) =

√
t4 + 1, so

f ′(t) =
1

3
(t8 − 8)−2/3(8t7) and g′(t) =

1

2
(t4 + 1)−1/2(4t3).

Slope is given by g′(0)/f ′(0), which here is undefined since f ′(0) = 0.

7b Since y =
√
t4 + 1 implies t4 = y2 − 1, we obtain

x =
3
√
t8 − 8 = 3

√
(y2 − 1)2 − 8 = 3

√
y4 − 2y2 − 7.

8 The set-up is thus:
(x, y) =

(
1− 1

10
t
)

(−2, 5) + 1
10
t (2,−1)

for 0 ≤ t ≤ 10. Equivalently we may write

(x, y) =
(
2
5
t− 2,−3

5
t+ 5

)
, t ∈ [0, 10].

9 As given here, r can never be 0. Thus we may safely divide by r:

2

4r cos θ + 3r sin θ
= 1 ⇒ 2

4x+ 3y
= 1 ⇒ 4x+ 3y = 2.

This is a line, of course.


