Math 141 Exam \#4 Key (Fall 2019)

1 Let $f(x)=\sqrt{x}$, and find the 3rd-order Taylor polynomial with center 9:

$$
\begin{aligned}
p_{3}(x) & =f(9)+f^{\prime}(9)(x-9)+\frac{f^{\prime \prime}(9)}{2!}(x-9)^{2}+\frac{f^{\prime \prime \prime}(9)}{3!}(x-9)^{3} \\
& =3+\frac{x-9}{6}-\frac{(x-9)^{2}}{216}+\frac{(x-9)^{3}}{3888}
\end{aligned}
$$

Now,

$$
\sqrt{9.3}=f(9.3) \approx p_{3}(9.3)=3+\frac{0.3}{6}-\frac{0.3^{2}}{216}+\frac{0.3^{3}}{3888} \approx 3.049589
$$

2a Apply Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{2^{2(n+1)} x^{n+1}}{(n+1)^{2}} \cdot \frac{n^{2}}{2^{2 n} x^{n}}\right|=|x| \lim _{n \rightarrow \infty} \frac{4 n^{2}}{(n+1)^{2}}=4|x|
$$

Series converges if $|x|<1 / 4$, so interval of convergence contains $\left(-\frac{1}{4}, \frac{1}{4}\right)$. Check endpoints.
At $x=1 / 4$: series becomes $\sum 1 / n^{2}$, a convergent p-series. At $x=-1 / 4$: series becomes $\sum(-1)^{n} / n^{2}$, which converges by the Alternating Series Test.

Interval of convergence is $\left[-\frac{1}{4}, \frac{1}{4}\right]$.

2b Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(x+1)^{n+1}}{(n+1) \cdot 6^{n+1}} \cdot \frac{n \cdot 6^{n}}{(x+1)^{n}}\right|=|x+1| \lim _{n \rightarrow \infty} \frac{n}{6 n+6}=\frac{|x+1|}{6}
$$

Series converges if $|x+1|<6$, so interval of convergence contains $(-7,5)$. Check endpoints.
At $x=5$ series becomes $\sum 1 / n$, which diverges. At $x=-7$ series becomes $\sum(-1)^{n} / n$, which converges by the Alternating Series Test.

Interval of convergence is $[-7,5)$.

2c Ratio Test:

$$
\lim \left|\frac{(n+1)!(x-3)^{n+1}}{n!(x-3)^{n}}\right|=\lim _{n \rightarrow \infty}(n+1)|x-3|= \begin{cases}\infty, & x \neq 3 \\ 0, & x=3\end{cases}
$$

The series only converges at $\{3\}$.

3 Using the formula for a convergent geometric series,

$$
f(x)=2 x \cdot \frac{1}{1-x^{4}}=2 x \sum_{n=0}^{\infty} x^{4 n}=\sum_{n=0}^{\infty} 2 x^{4 n+1}
$$

Apply the Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{2 x^{4(n+1)+1}}{2 x^{4 n+1}}\right|=2 x^{4} .
$$

Series converges if $2 x^{4}<1$, so $(-1 / \sqrt[4]{2}, 1 / \sqrt[4]{2})$ is contained in the interval of convergence. Since the series diverges at the endpoints, $\left(-2^{-1 / 4}, 2^{-1 / 4}\right)$ is the interval of convergence.

4 Binomial series:

$$
(1+x)^{1 / 2}=\sum_{n=0}^{\infty}\binom{1 / 2}{n} x^{n}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}+\cdots
$$

with interval of convergence $(-1,1)$.

5 We have

$$
\lim _{x \rightarrow 0} \frac{1-\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots\right)}{1+x-\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right)}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}}{2}-\frac{x^{4}}{24}+\cdots}{-\frac{x^{2}}{2}-\frac{x^{3}}{6}-\cdots}=\lim _{x \rightarrow 0} \frac{\frac{1}{2}-\frac{x^{2}}{24}+\cdots}{-\frac{1}{2}-\frac{x}{6}-\cdots}=-1
$$

6 From the table provided we have $e^{x}=\sum_{n=0}^{\infty} x^{n} / n$! for all $x \in(-\infty, \infty)$, and so

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}
$$

for all x. Now,

$$
\int\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}\right) d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1}+c
$$

for all x and arbitrary constant c. Thus, by the Fundamental Theorem of Calculus,

$$
\int_{0}^{1 / 3} e^{-x^{2}} d x=\int_{0}^{1 / 3}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}\right) d x=\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1}\right]_{0}^{1 / 3}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)}\left(\frac{1}{3}\right)^{2 n+1}
$$

We have arrived at an alternating series $\sum(-1)^{n} b_{n}$ with

$$
b_{n}=\frac{1}{n!(2 n+1)}\left(\frac{1}{3}\right)^{2 n+1}
$$

for $n \geq 0$. The first few b_{n} values are

$$
b_{0}=\frac{1}{3}, \quad b_{1}=\frac{1}{81}, \quad b_{2}=\frac{1}{2430}>10^{-4}, \quad b_{3}=\frac{1}{91,854}<10^{-4},
$$

so by the Alternating Series Estimation Theorem the approximation

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)}\left(\frac{1}{3}\right)^{2 n+1} \approx b_{0}-b_{1}+b_{2} \approx 0.321399
$$

will have an absolute error that is less than $b_{3}<10^{-4}$. Hence the approximation

$$
\int_{0}^{1 / 3} e^{-x^{2}} d x \approx \frac{1}{3}-\frac{1}{81}+\frac{1}{2430}
$$

has an absolute error less than 10^{-4}.

7a Setting $x=f(t)=\sqrt[3]{t^{8}-8}$ and $y=g(t)=\sqrt{t^{4}+1}$, so

$$
f^{\prime}(t)=\frac{1}{3}\left(t^{8}-8\right)^{-2 / 3}\left(8 t^{7}\right) \quad \text { and } \quad g^{\prime}(t)=\frac{1}{2}\left(t^{4}+1\right)^{-1 / 2}\left(4 t^{3}\right)
$$

Slope is given by $g^{\prime}(0) / f^{\prime}(0)$, which here is undefined since $f^{\prime}(0)=0$.

7b Since $y=\sqrt{t^{4}+1}$ implies $t^{4}=y^{2}-1$, we obtain

$$
x=\sqrt[3]{t^{8}-8}=\sqrt[3]{\left(y^{2}-1\right)^{2}-8}=\sqrt[3]{y^{4}-2 y^{2}-7}
$$

8 The set-up is thus:

$$
(x, y)=\left(1-\frac{1}{10} t\right)(-2,5)+\frac{1}{10} t(2,-1)
$$

for $0 \leq t \leq 10$. Equivalently we may write

$$
(x, y)=\left(\frac{2}{5} t-2,-\frac{3}{5} t+5\right), \quad t \in[0,10] .
$$

9 As given here, r can never be 0 . Thus we may safely divide by r :

$$
\frac{2}{4 r \cos \theta+3 r \sin \theta}=1 \Rightarrow \frac{2}{4 x+3 y}=1 \Rightarrow 4 x+3 y=2
$$

This is a line, of course.

