Math 141 Exam \#3 Key (Fall 2019)

1a Use the continuity of the logarithm and L'Hôpital's rule:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(n \sin \frac{1}{n}\right) & =\ln \left(\lim _{n \rightarrow \infty} n \sin \frac{1}{n}\right) \stackrel{\text { LR }}{=} \ln \left(\lim _{n \rightarrow \infty} \frac{-\cos (1 / n) / n^{2}}{-1 / n^{2}}\right) \\
& =\ln \left(\lim _{n \rightarrow \infty} \cos \frac{1}{n}\right)=\ln (\cos 0)=\ln 1=0
\end{aligned}
$$

1b The sequence converges:

$$
\lim _{n \rightarrow \infty}\left(e^{3 n+4}\right)^{1 / n}=\lim _{n \rightarrow \infty} e^{3+4 / n}=e^{3}
$$

2a Sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is increasing if and only if $a_{n+1}>a_{n}$ for all $n \geq 0$, and since

$$
a_{n+1}>a_{n} \Leftrightarrow \frac{1}{3} a_{n}+6>a_{n} \quad \Leftrightarrow \quad a_{n}<9
$$

we can confirm $\left(a_{n}\right)$ is increasing if we can show $a_{n}<9$ is true for all $n \geq 0$
Clearly $0<a_{0}<9$. Now, for arbitrary $n \geq 0$ suppose that $0<a_{n}<9$. Then

$$
a_{n+1}=\frac{1}{3} a_{n}+6<\frac{1}{3} \cdot 9+6=9 \quad \text { and } \quad a_{n+1}=\frac{1}{3} a_{n}+6>\frac{1}{3} \cdot 0+6>0
$$

and we conclude by induction that $0<a_{n}<9$ for all $n \geq 0$. Thus $\left(a_{n}\right)$ is bounded, and also increasing.

2b Because $\left(a_{n}\right)$ is an increasing bounded sequence, the Monotone Convergence Theorem implies that the sequence converges. That is, the limit $\lim _{n \rightarrow \infty} a_{n}=\alpha$ for some $\alpha \in \mathbb{R}$, and with the given recurrence relation we obtain

$$
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(\frac{1}{3} a_{n}+6\right) \Rightarrow \alpha=\frac{1}{3} \alpha+6 \Rightarrow \alpha=9 .
$$

The limit of the sequence is 9 .

3 Reindex to obtain

$$
\sum_{n=1}^{\infty} \frac{8}{4^{n}}=\sum_{n=0}^{\infty} \frac{8}{4^{n+1}}=2 \sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}=2 \cdot \frac{1}{1-1 / 4}=\frac{8}{3}
$$

4 Partial fraction decomposition gives

$$
\frac{20}{25 n^{2}+15 n-4}=\frac{4}{5 n-1}-\frac{4}{5 n+4}
$$

The nth partial sum is

$$
s_{n}=\sum_{k=1}^{n}\left(\frac{4}{5 k-1}-\frac{4}{5 k+4}\right)=1-\frac{4}{5 n+4}
$$

and so

$$
\sum_{n=1}^{\infty} \frac{20}{25 n^{2}+15 n-4}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{4}{5 n+4}\right)=1
$$

The series converges.

5 We have

$$
\begin{aligned}
5.1 \overline{32} & =5.1+\frac{32}{10^{3}}+\frac{32}{10^{5}}+\frac{32}{10^{7}}+\cdots=5.1+\sum_{n=0}^{\infty} \frac{32}{10^{2 n+3}} \\
& =5.1+\sum_{n=0}^{\infty} \frac{32}{1000}\left(\frac{1}{100}\right)^{n}=5.1+\frac{32 / 1000}{1-1 / 100}=\frac{5081}{990} .
\end{aligned}
$$

6a Compare to $\sum(4 / 5)^{n}$. Since

$$
\lim _{n \rightarrow \infty} \frac{\frac{4^{n}}{5^{n}-6}}{\frac{4^{n}}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{5^{n}}{5^{n}-6}=\lim _{n \rightarrow \infty} \frac{1}{1-6 / 5^{n}}=\frac{1}{1-0}=1 \in(0, \infty)
$$

the Limit Comparison Test indicates that $\sum(4 / 5)^{n}$ and the given series either both converge or both diverge. However, since $\sum(4 / 5)^{n}$ is a convergent geometric series, we conclude that the given series also converges.

6b For $n \geq 1$ we have $2^{\ln n} \leq e^{\ln n}=n$, so $1 / 2^{\ln n}>\frac{1}{n}$, and since $\sum 1 / n$ diverges by the p-Series Test, the Comparison Test implies that the given series diverges also.

6c Since

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=\lim _{k \rightarrow \infty} \sqrt[k]{\left(\frac{k^{2}}{2 k^{2}+1}\right)^{k}}=\lim _{k \rightarrow \infty} \frac{k^{2}}{2 k^{2}+1}=\frac{1}{2}<1
$$

the Root Test implies that the given series converges.

6d Since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!-n!}{(n+2)!-(n+1)!}\right|=\lim _{n \rightarrow \infty} \frac{n}{(n+1)^{2}}=0<1
$$

the Ratio Test implies that the given series converges.

6e Apply the Integral Test: with the substitution $u=\sqrt{x}$ we have

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x} e^{\sqrt{x}}} d x=\int_{1}^{\infty} \frac{2}{e^{u}} d u=\lim _{t \rightarrow \infty}\left[-\frac{2}{e^{u}}\right]_{1}^{t}=\lim _{t \rightarrow \infty}\left(\frac{2}{e}-\frac{2}{e^{t}}\right)=\frac{2}{e}
$$

and since the integral converges, we conclude that the given series also converges.
$6 f$ Since

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left(\frac{1 \cdot 3 \cdot 5 \cdots[2(n+1)-1]}{[2(n+1)-1]!} \cdot \frac{(2 n-1)!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2(n+1)-1}{2 n(2 n+1)}=\lim _{n \rightarrow \infty} \frac{2 n+1}{4 n^{2}+2 n}=0,
\end{aligned}
$$

the series converges by the Ratio Test.

7a Since $\left(1 / n^{2 / 3}\right)$ is a decreasing sequence of nonnegative values such that $1 / n^{2 / 3} \rightarrow 0$ as $n \rightarrow \infty$, the series converges by the Alternating Series Test. Since $\sum 1 / n^{2 / 3}$ diverges by the p-Series Test, the given series is conditionally convergent.

7b For all $k \geq 1$ we have

$$
0<b_{k}=\frac{1}{2 \sqrt{k}-1}
$$

with $b_{k+1}<b_{k}$ and $b_{k} \rightarrow 0$ as $k \rightarrow \infty$. The Alternating Series Test thus implies the series given converges. However,

$$
b_{k}=\frac{1}{2 \sqrt{k}-1}>\frac{1}{2 \sqrt{k}}
$$

for all $k \geq 1$, and since $\sum \frac{1}{2 \sqrt{k}}$ diverges by the p-Series Test, we conclude that

$$
\sum_{k=1}^{\infty} \frac{1}{2 \sqrt{k}-1}
$$

diverges by the Comparison Test. Therefore the given series is conditionally convergent.

