
Math 141 Exam #3 Key (Fall 2019)

1a Use the continuity of the logarithm and L’Hôpital’s rule:

lim
n→∞

ln

(
n sin

1

n

)
= ln

(
lim
n→∞

n sin
1

n

)
LR

= ln

(
lim
n→∞

− cos(1/n)/n2

−1/n2

)
= ln

(
lim
n→∞

cos
1

n

)
= ln(cos 0) = ln 1 = 0.

1b The sequence converges:

lim
n→∞

(e3n+4)1/n = lim
n→∞

e3+4/n = e3.

2a Sequence (an)∞n=0 is increasing if and only if an+1 > an for all n ≥ 0, and since

an+1 > an ⇔
1

3
an + 6 > an ⇔ an < 9,

we can confirm (an) is increasing if we can show an < 9 is true for all n ≥ 0
Clearly 0 < a0 < 9. Now, for arbitrary n ≥ 0 suppose that 0 < an < 9. Then

an+1 =
1

3
an + 6 <

1

3
· 9 + 6 = 9 and an+1 =

1

3
an + 6 >

1

3
· 0 + 6 > 0

and we conclude by induction that 0 < an < 9 for all n ≥ 0. Thus (an) is bounded, and also
increasing.

2b Because (an) is an increasing bounded sequence, the Monotone Convergence Theorem
implies that the sequence converges. That is, the limit limn→∞ an = α for some α ∈ R, and
with the given recurrence relation we obtain

lim
n→∞

an+1 = lim
n→∞

(
1

3
an + 6

)
⇒ α =

1

3
α + 6 ⇒ α = 9.

The limit of the sequence is 9.

3 Reindex to obtain

∞∑
n=1

8

4n
=

∞∑
n=0

8

4n+1
= 2

∞∑
n=0

(
1

4

)n

= 2 · 1

1− 1/4
=

8

3
.

4 Partial fraction decomposition gives

20

25n2 + 15n− 4
=

4

5n− 1
− 4

5n+ 4
.



2

The nth partial sum is

sn =
n∑

k=1

(
4

5k − 1
− 4

5k + 4

)
= 1− 4

5n+ 4
,

and so
∞∑
n=1

20

25n2 + 15n− 4
= lim

n→∞
sn = lim

n→∞

(
1− 4

5n+ 4

)
= 1.

The series converges.

5 We have

5.132 = 5.1 +
32

103
+

32

105
+

32

107
+ · · · = 5.1 +

∞∑
n=0

32

102n+3

= 5.1 +
∞∑
n=0

32

1000

(
1

100

)n

= 5.1 +
32/1000

1− 1/100
=

5081

990
.

6a Compare to
∑

(4/5)n. Since

lim
n→∞

4n

5n − 6
4n

5n

= lim
n→∞

5n

5n − 6
= lim

n→∞

1

1− 6/5n
=

1

1− 0
= 1 ∈ (0,∞),

the Limit Comparison Test indicates that
∑

(4/5)n and the given series either both converge
or both diverge. However, since

∑
(4/5)n is a convergent geometric series, we conclude that

the given series also converges.

6b For n ≥ 1 we have 2lnn ≤ elnn = n, so 1/2lnn > 1
n
, and since

∑
1/n diverges by the

p-Series Test, the Comparison Test implies that the given series diverges also.

6c Since

lim
k→∞

k
√
|ak| = lim

k→∞

k

√(
k2

2k2 + 1

)k

= lim
k→∞

k2

2k2 + 1
=

1

2
< 1,

the Root Test implies that the given series converges.

6d Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)!− n!

(n+ 2)!− (n+ 1)!

∣∣∣∣ = lim
n→∞

n

(n+ 1)2
= 0 < 1,

the Ratio Test implies that the given series converges.
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6e Apply the Integral Test: with the substitution u =
√
x we have∫ ∞

1

1√
xe

√
x
dx =

∫ ∞

1

2

eu
du = lim

t→∞

[
− 2

eu

]t
1

= lim
t→∞

(
2

e
− 2

et

)
=

2

e
,

and since the integral converges, we conclude that the given series also converges.

6f Since

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
1 · 3 · 5 · · · [2(n+ 1)− 1]

[2(n+ 1)− 1]!
· (2n− 1)!

1 · 3 · 5 · · · (2n− 1)

)
= lim

n→∞

2(n+ 1)− 1

2n(2n+ 1)
= lim

n→∞

2n+ 1

4n2 + 2n
= 0,

the series converges by the Ratio Test.

7a Since (1/n2/3) is a decreasing sequence of nonnegative values such that 1/n2/3 → 0 as
n → ∞, the series converges by the Alternating Series Test. Since

∑
1/n2/3 diverges by the

p-Series Test, the given series is conditionally convergent.

7b For all k ≥ 1 we have

0 < bk =
1

2
√
k − 1

,

with bk+1 < bk and bk → 0 as k →∞. The Alternating Series Test thus implies the series given
converges. However,

bk =
1

2
√
k − 1

>
1

2
√
k

for all k ≥ 1, and since
∑

1
2
√
k

diverges by the p-Series Test, we conclude that

∞∑
k=1

1

2
√
k − 1

diverges by the Comparison Test. Therefore the given series is conditionally convergent.


