1a Use L'Hôpital's rule:

$$
\lim _{n \rightarrow \infty} n \sin \frac{\pi}{n}=\lim _{n \rightarrow \infty} \frac{\sin (\pi / n)}{1 / n} \stackrel{\text { LR }}{=} \lim _{n \rightarrow \infty} \frac{\left(-\pi / n^{2}\right) \cos (\pi / n)}{-1 / n^{2}}=\lim _{n \rightarrow \infty} \pi \cos \frac{\pi}{n}=\pi \cos 0=\pi .
$$

1b We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\sqrt{n^{4}-2 n}-n^{2}\right) & =\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{4}-2 n}-n^{2}\right)\left(\sqrt{n^{4}-2 n}+n^{2}\right)}{\sqrt{n^{4}-2 n}+n^{2}}=\lim _{n \rightarrow \infty} \frac{-2 n}{\sqrt{n^{4}-2 n}+n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{-2 / n}{\sqrt{1-2 / n^{3}}+1}=\frac{0}{\sqrt{1-0}+1}=0
\end{aligned}
$$

2 Since $-\pi / 2<\tan ^{-1} n<\pi / 2$ for any integer $n$, we have

$$
-\frac{10 \pi}{n^{2}+8}<\frac{20 \tan ^{-1} n}{n^{2}+8}<\frac{10 \pi}{n^{2}+8}
$$

for all $n$, and since

$$
\lim _{n \rightarrow \infty}\left( \pm \frac{10 \pi}{n^{2}+8}\right)=0
$$

the Squeeze Theorem implies that

$$
\lim _{n \rightarrow \infty} \frac{20 \tan ^{-1} n}{n^{2}+8}=0
$$

3 Reindex to obtain

$$
\sum_{n=3}^{\infty} \frac{6}{4^{n}}=\sum_{n=0}^{\infty} \frac{6}{4^{n+3}}=\frac{6}{4^{3}} \sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}=\frac{6}{64} \cdot \frac{1}{1-1 / 4}=\frac{1}{8}
$$

4 The $n$th partial sum is

$$
\begin{aligned}
s_{n} & =(\ln 3-\ln 1)+(\ln 4-\ln 2)+\cdots+[\ln (n+1)-\ln (n-1)]+[\ln (n+2)-\ln n] \\
& =-\ln 1-\ln 2+\ln (n+1)+\ln (n+2)=\ln (n+1)(n+2)-\ln 2,
\end{aligned}
$$

and so

$$
\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}[\ln (n+1)(n+2)-\ln 2]=\infty
$$

That is, the series diverges.

5 Find the smallest integer value of $n$ for which $\frac{1}{2 n^{4}}<\frac{1}{10,000}$. Since

$$
\frac{1}{2 n^{4}}<\frac{1}{10,000} \Rightarrow n^{4}>5000
$$

and 9 is the first integer for which $9^{4}>5000$, estimation with the first eight terms will suffice:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{4}} \approx \sum_{n=1}^{8} \frac{(-1)^{n}}{2 n^{4}}
$$

has absolute error less than $10^{-4}$.

6a For all $n \geq 1$ we have

$$
0<\frac{4}{2+3^{n} n} \leq \frac{4}{3^{n} n} \leq \frac{4}{3^{n}}
$$

and since $\sum 4 / 3^{n}$ is a convergent geometric series, we conclude by the Direct Comparison Test that the given series converges.

6b Since

$$
\lim _{n \rightarrow \infty} \frac{4^{n}}{n^{2}}=+\infty
$$

the series diverges by the Divergence Test.

6c For all $n \geq 1$ we have

$$
0 \leq \frac{\tan ^{-1} n}{n^{2}} \leq \frac{\pi}{2 n^{2}}
$$

and since $\sum 1 / n^{2}$ is a convergent $p$-series, it follows that $\sum \pi / 2 n^{2}$ is likewise convergent, and therefore the given series converges by the Direct Comparison Test.

6d Since

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{2^{n} n!}\right|=2 \lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}}=2 \lim _{n \rightarrow \infty} \exp \left(n \cdot \ln \frac{n}{n+1}\right) \\
& =2 \exp \left(\lim _{n \rightarrow \infty} \frac{\ln n-\ln (n+1)}{1 / n}\right) \stackrel{\text { LR }}{=} 2 \exp \left(\frac{1 / n-1 /(n+1)}{-1 / n^{2}}\right) \\
& =2 \exp \left(-\lim _{n \rightarrow \infty} \frac{n}{n+1}\right)=2 \exp (-1)=\frac{2}{e}<1,
\end{aligned}
$$

the series converges by the Ratio Test.

6e Since

$$
\lim _{n \rightarrow \infty} n^{-1 / n}=\lim _{n \rightarrow \infty} \exp \left(-\frac{\ln n}{n}\right)=\exp (0)=1 \neq 0
$$

the series diverges by the Divergence Test.

6f Since

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left(\frac{1 \cdot 3 \cdot 5 \cdots[2(n+1)-1]}{[2(n+1)-1]!} \cdot \frac{(2 n-1)!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2(n+1)-1}{2 n(2 n+1)}=\lim _{n \rightarrow \infty} \frac{2 n+1}{4 n^{2}+2 n}=0,
\end{aligned}
$$

the series converges by the Ratio Test.

7a Since $\left(1 / n^{5 / 4}\right)$ is a decreasing sequence of nonnegative values such that $1 / n^{5 / 4} \rightarrow 0$ as $n \rightarrow \infty$, the series converges by the Alternating Series Test. Since $\sum 1 / n^{5 / 4}$ is a convergent $p$-series, the given series is also absolutely convergent.

7b Since

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln n}=+\infty
$$

the series diverges by the Divergence Test.

