MATH 141 EXAM #1 KEY (FALL 2018)

1a We have $f'(x) = 6 + \cos x$, so f'(x) > 0 for all $x \in \mathbb{R}$, which implies f is strictly increasing everywhere and is therefore one-to-one.

1b Since f(0) = 0, by the Inverse Function Theorem we have

$$(f^{-1})'(0) = (f^{-1})'(f(0)) = \frac{1}{f'(0)} = \frac{1}{6 + \cos(0)} = \frac{1}{7}.$$

2a Quotient rule:

$$y' = \frac{(\ln x - 2)(1) - (x)(1/x)}{(\ln x - 2)^2} = \frac{\ln x - 3}{(\ln x - 2)^2}.$$

2b Chain rule: $f'(x) = \sec^2(\cos e^x) \cdot (-\sin e^x) \cdot e^x = -e^x \sin(e^x) \sec^2(\cos e^x)$.

2c We have

$$g'(x) = \frac{d}{dx} \left(e^{(x-1)\ln(\cot x)} \right) = e^{(x-1)\ln(\cot x)} \frac{d}{dx} \left[(x-1)\ln(\cot x) \right]$$
$$= (\cot x)^{x-1} \left[-\frac{(x-1)\csc^2 x}{\cot x} + \ln(\cot x) \right].$$

2d We have

$$h'(t) = \frac{d}{dt} \left(e^{t^{1/2} \ln t} \right) = e^{t^{1/2} \ln t} \frac{d}{dt} (t^{1/2} \ln t) = t^{(t^{1/2})} \left(t^{-1/2} + \frac{1}{2} t^{-1/2} \ln t \right).$$

2e Use algebra to find that

$$\ell(x) = \frac{4\ln(1-x^3)}{\ln 3}.$$

Now,

$$\ell'(x) = \frac{12x^2}{(x^3 - 1)\ln 3}.$$

2f By the Chain Rule:

$$\varphi'(u) = \frac{1}{1 + (4u - 4)^2} \cdot (4u - 4)' = \frac{4}{1 + (4u - 4)^2}.$$

2g
$$y' = 2x \cosh^3(5x) + 15x^2 \cosh^2(5x) \sinh(5x)$$
.

3 Here $y'(x) = 2e^x$, so slope of the tangent line at $x = \ln 6$ is $y'(\ln 6) = 2e^{\ln 6} = 12$. Also the tangent line contains the point $(\ln 6, 20)$ since $y(\ln 6) = 2e^{\ln 6} + 8 = 20$. Equation of the line:

$$y = 12x + (20 - 12\ln 6).$$

4a Let $u = x^6$, so

$$\int x^5 e^{x^6} dx = \int e^u du = \frac{1}{6} e^u + c = \frac{1}{6} e^{x^6} + c.$$

4b Let $u = \ln(\ln x)$, so $du = \frac{1}{x \ln x} dx$, and the integral becomes

$$\int \frac{1}{u} du = \ln|u| + c = \ln\left|\ln(\ln x)\right| + c.$$

4c Let $u = \cos x$, so $du = -\sin x \, dx = -\frac{1}{\csc x} dx$. Integral becomes

$$-\int e^{u} du = -e^{u} + c = -e^{\cos x} + c.$$

5a Letting $u = e^{t/2} + 1$, so integral becomes

$$\int_{1/e+1}^{e+1} \frac{2}{u} du = 2 \ln |u| \Big|_{1/e+1}^{e+1} = 2 \ln \left(\frac{e+1}{e^{-1}+1} \right) = 2.$$

5b Use a given formula:

$$\frac{1}{2} \int_0^{3/2} \frac{1}{\sqrt{9 - x^2}} dx = \frac{1}{2} \left[\sin^{-1} \left(\frac{x}{3} \right) \right]_0^{3/2} = \frac{\pi}{12}.$$

5c Let $u = \cosh 4x$, so integral becomes

$$\frac{1}{4} \int_{1}^{\cosh 4} u^3 \, du = \frac{1}{4} \left[\frac{1}{4} u^4 \right]_{1}^{\cosh 4} = \frac{\cosh^4 4 - 1}{16}.$$

6 We have

$$\lim_{x \to \infty} e^{\frac{\ln(2x^3+1)}{\ln x}} = \exp \left(\lim_{x \to \infty} \frac{\ln(2x^3+1)}{\ln x} \right) \stackrel{\text{lr}}{=} \exp \left(\lim_{x \to \infty} \frac{6x^2/(2x^3+1)}{1/x} \right) = \exp \left(\lim_{x \to \infty} \frac{6x^3}{2x^3+1} \right) = e^3.$$