MATH 141 ExaM #3 KEY (FALL 2017)

la Limit is 1/3.

1b We have _
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2 Since —7/2 < tan"!n < 7/2 for any integer n, we have
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for all n, and since
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the Squeeze Theorem implies that

-1
lim 4tan—4" —0.
n— oo n
3 Reindex to obtain
25 5 < 5/1\" 5/9 5
S-S a=o(3) s
k=2 k=0 k=0

4 'The nth partial sum is
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That is, the series diverges.

5 Find the smallest integer value of n for which # < Tlo()' Since
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and 4* < 500 while 5% > 500, the estimation
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has absolute error less than 1073.



6a Since 5/(10 —e ™) — 1/2 # 0 as n — oo, the series diverges by the Divergence Test.

6b Making the substitution u = 23, we have
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and so the series converges by the Integral Test.
6c  We have
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and so the series converges by the Ratio Test.

6d We have
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so the series converges by the Root Test.

6e Since
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and ) % is a convergent p-series, the series converges by the Comparison Test.

6f Since
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the series diverges by the Ratio Test.

Qn

Ta Since 1/ In®n is a decreasing sequence of nonnegative values such that 1/In*n — 0 as
n — oo, the series converges by the Alternating Series Test. Does not converge absolutely,
however, and so the series is conditionally convergent.

7b Since
2 n
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the series diverges by the Divergence Test.



