MATH 141 ExaM #3 KEY (FALL 2015)

la We have
2m 1/2\"
lim a, = lim —— = lim (—) = 0.

n—00 n—00 3""’1 n—oo 3\ 3

1b First we evaluate
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2 We have

3 For each n > 1 we have
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the series diverges by the Divergence Test.
4b Letting u = —222, we have
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so the integral converges, and therefore the series 2, ne™"" converges by the Integral Test.



4c¢ Since
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the series diverges by the Ratio Test.
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the series converges by the Root Test.

4e For each n > 1 we have
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and since >~ | n~3/2 is a convergent p-series, it follows that
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converges by the Direct Comparison Test.

4f For each n > 1 we have
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is a convergent p-series, it follows that
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converges by the Direct Comparison Test.
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5a Since Inn and n are monotone increasing functions for n > 2, it follows that
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is monotone decreasing (i.e. nonincreasing) for n > 2. Also
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and so by the Alternating Series Test the series converges.

5b Since
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the series diverges by the Divergence Test.
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