
Math 141 Exam #3 Key (Fall 2015)

1a We have

lim
n→∞

an = lim
n→∞

2n

3n+1
= lim

n→∞

1

3

(
2

3

)n

= 0.

1b First we evaluate

lim
n→∞

an = lim
n→∞

ln

(
n+ 1

2n

)
= lim

n→∞
ln

(
1 + 1/n

2

)
= ln

(
1
2

)
.

2 We have
∞∑
n=0

4n+1

5n
=
∞∑
n=0

4

(
4

5

)n

=
4

1− 4/5
= 20.

3 For each n ≥ 1 we have

sk =
k∑

n=1

(
1

n+ 6
− 1

n+ 7

)
=

(
1

7
− 1

8

)
+

(
1

8
− 1

9

)
+

(
1

9
− 1

10

)
+ · · ·+

(
1

k + 5
− 1

k + 6

)
+

(
1

k + 6
− 1

k + 7

)
=

1

7
− 1

k + 7
,

so
∞∑
n=1

(
1

n+ 6
− 1

n+ 7

)
= lim

k→∞
sk = lim

k→∞

(
1

7
− 1

k + 7

)
=

1

7
.

4a Since

lim
n→∞

n√
n2 + 25

= 1 6= 0,

the series diverges by the Divergence Test.
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so the integral converges, and therefore the series
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converges by the Integral Test.
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the series diverges by the Ratio Test.
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the series converges by the Root Test.
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4f For each n ≥ 1 we have

0 ≤ n7

n9 + 3
≤ n7

n9
=

1

n2
,

and since
∑∞

n=1 n
−2 is a convergent p-series, it follows that

∞∑
n=1

n7

n9 + 3

converges by the Direct Comparison Test.

5a Since lnn and n are monotone increasing functions for n ≥ 2, it follows that
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and so by the Alternating Series Test the series converges.
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the series diverges by the Divergence Test.


