MATH 141 ExaM #4 KeY (FALL 2011)
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if M < 1, implying —8 < x + 1 < 8 and thus —9 < z < 7. It remains to test the endpoints. When z = 7,
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convergence is (—9,7), and the radius of convergence is | —9 — 7|/2 = 8.

(22 + 3)F+1 6k i k|2x + 3| 22 1 3] .
1m . = 11m ——— = X , SO series
k—oo| 6(k+1) (2 + 3)k k—oo k41
(=1)"

6k

Gk+1
ag

1b. Applying Ratio Test, lim

k—o0

o
converges if —1 < 2z + 3 < 1, implying —2 < x < —1. When = —2 series becomes Z , which converges
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by the Alternating Series Test. When x = —1 series becomes g % which diverges since g z diverges. Interval
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of convergence is [-2, —1), radius of convergence is 5.
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2. g(x) =5 e g 5 - (6z)*, which converges if and only if |6z| < 1, so the interval of convergence is
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converges if and only if |/ — 7| < 1, which solves to give 6 < /r < 8 and then 36 < z < 64. So interval of
convergence is (36, 64).

The series

3. Use the geometric series given in the previous problem to get f(x) =
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4c. Use the Ratio Test to find that the interval of convergence is (—o0, 00).

5. Using the Maclaurin series for tan—!(z) that is given, we obtain:
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6. Use Ye Olde Remainder Theorem, which says: “Let R,, = |S — Sp| be the remainder in approximating the
value of a convergent alternating series Y oo, (—1)*"1ay by the sum of its first n terms. Then R,, < a,+1.” But
before we can use this theorem there is some work to do. Because the Maclaurin series for sin(z) is everywhere
convergent it can be multiplied by 1/x termwise:
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Now, the new series we obtain is also everywhere convergent, so it can be integrated termwise:
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The Remainder Theorem assures us that if we estimate the value of f00'15 sin(x)/z dr by 0.15—1.875x 10~ ~ 0.1498
then the error will be no greater than 1.266 x 1077, and this is certainly within our accepted tolerance of 10!
Therefore our estimate is 0.1498.

7. From = = v/t + 4 comes v/t =  — 4. Putting this into y = 3v/f gives y = 3(x — 4). Note that this will not
be a line, since 0 <t < 16 implies 0 < Vi < 4, and this means 0 < z — 4 < 4. That is, we have y = 3x — 12 for
4 < x < 8, which is a line segment.

8. (4\/§,ﬂ/4) and (—4\/5, 57r/4) will do, as well as (4\f, —77r/4) and many other possibilities.

9. Multiply both sides by r to get > = 8rsinf. Now, since r?2=22+y%and y = rsin& we obtain x? + y? = 8y.

Next we complete a square to see that we have a circle: 22 + (3> —8y) =0 = 22+ (y> -8y +16) =16 =
22 + (y — 4)? = 16. The circle is centered at (0,4) and has radius 4.

10. Set f(f) = sin26. To find where horizontal tangent lines reside, find 6 for which
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which entails solving 2 cos 260 sin 6 + sin 26 cos § = 0. Using the supplied identities sin 20 = 2sin 8 cos § and cos 20 =
cos? 6 — sin? 6, the equation becomes (sin6)(2 — 3sin?6#) = 0, so either sin = 0 or sinf = +./2/3. Solving
sinf = \/% gives two solutions: #; = tan~! /2 (an angle in Quadrant I) and 3 = 7 —tan~' /2 (in QII). Solving
sinf = —/2/3 gives 03 = © — tan"!(—+/2) (in QIII) and 64 = tan~'(—+/2) (in QIV). Putting these angles into
r = sin 26 gives four points:
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(These types of problems are seldom pleasant company.) Moving on to sin§ = 0, we obtain § = 0, 7, which yields
just one point: (0,0).




