
Math 141 Exam #4 Key (Fall 2011)

1a. Applying Ratio Test, lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(x+ 1)k+1

8k+1
· 8k

(x+ 1)k

∣∣∣∣ = lim
k→∞

|x+ 1|
8

=
|x+ 1|

8
, so series converges

if
|x+ 1|

8
< 1, implying −8 < x + 1 < 8 and thus −9 < x < 7. It remains to test the endpoints. When x = 7,

lim
k→∞

(
x+ 1

8

)k

= lim
k→∞

(
7 + 1

8

)k

= lim
k→∞

(1) = 1 6= 0, so the series diverges by the Divergence Test. When x = −9,

lim
k→∞

(
x+ 1

8

)k

= lim
k→∞

(
−9 + 1

8

)k

= lim
k→∞

(−1)k 6= 0, so again the series diverges. Therefore the interval of

convergence is (−9, 7), and the radius of convergence is | − 9− 7|/2 = 8.

1b. Applying Ratio Test, lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(2x+ 3)k+1

6(k + 1)
· 6k

(2x+ 3)k

∣∣∣∣ = lim
k→∞

k|2x+ 3|
k + 1

= |2x + 3|, so series

converges if −1 < 2x + 3 < 1, implying −2 < x < −1. When x = −2 series becomes

∞∑
k=1

(−1)k

6k
, which converges

by the Alternating Series Test. When x = −1 series becomes

∞∑
k=1

1

6k
, which diverges since

∞∑
k=1

1

k
diverges. Interval

of convergence is [−2,−1), radius of convergence is 1
2 .

2. g(x) = 5 · 1

1− 6x
=
∞∑
k=0

5 · (6x)k, which converges if and only if |6x| < 1, so the interval of convergence is(
−1

6 ,
1
6

)
.

3. Use the geometric series given in the previous problem to get f(x) =
1

1− (
√
x− 7)

=
1

8−
√
x

. The series

converges if and only if |
√
x − 7| < 1, which solves to give 6 <

√
x < 8 and then 36 < x < 64. So interval of

convergence is (36, 64).

4a.
40

0!
x0 − 42

2!
x2 +

44

4!
x4 − 46

6!
x6 + · · · = 1− 16

2
x2 +

256

24
x4 − 4096

720
x6 + · · · = 1− 8x2 +

32

3
x4 − 256

45
x6 + · · ·

4b.

∞∑
k=0

(−1)k42k

(2k)!
x2k =

∞∑
k=0

(−1)k(4x)2k

(2k)!
.

4c. Use the Ratio Test to find that the interval of convergence is (−∞,∞).

5. Using the Maclaurin series for tan−1(x) that is given, we obtain:

lim
x→0

3 tan−1 x− 3x+ x3

x5
= lim

x→0

3
(
x− 1

3x
3 + 1

5x
5 − 1

7x
7 + · · ·

)
− 3x+ x3

x5

= lim
x→0

3
5x

5 − 3
7x

7 + · · ·
x5

= lim
x→0

(35 −
3
7x

2 + · · · ) = 3
5



6. Use Ye Olde Remainder Theorem, which says: “Let Rn = |S − Sn| be the remainder in approximating the
value of a convergent alternating series

∑∞
k=1(−1)k+1ak by the sum of its first n terms. Then Rn ≤ an+1.” But

before we can use this theorem there is some work to do. Because the Maclaurin series for sin(x) is everywhere
convergent it can be multiplied by 1/x termwise:

sin(x)

x
=

1

x

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
=

∞∑
k=0

(−1)kx2k

(2k + 1)!
.

Now, the new series we obtain is also everywhere convergent, so it can be integrated termwise:∫ 0.15

0

sin(x)

x
dx =

∫ 0.15

0

[ ∞∑
k=0

(−1)kx2k

(2k + 1)!

]
dx =

∞∑
k=0

[∫ 0.15

0

(−1)kx2k

(2k + 1)!
dx

]
=
∞∑
k=0

[
(−1)kx2k+1

(2k + 1)(2k + 1)!

]0.15
0

=
∞∑
k=0

(−1)k(0.15)2k+1

(2k + 1)(2k + 1)!
=

0.15

(1)(1)
− 0.153

(3)(3!)
+

0.155

(5)(5!)
− 0.157

(7)(7!)
+ · · ·

≈ 0.15− 1.875× 10−4 + 1.266× 10−7 − · · ·

The Remainder Theorem assures us that if we estimate the value of
∫ 0.15
0 sin(x)/x dx by 0.15−1.875×10−4 ≈ 0.1498

then the error will be no greater than 1.266 × 10−7, and this is certainly within our accepted tolerance of 10−4!
Therefore our estimate is 0.1498.

7. From x =
√
t + 4 comes

√
t = x − 4. Putting this into y = 3

√
t gives y = 3(x − 4). Note that this will not

be a line, since 0 ≤ t ≤ 16 implies 0 ≤
√
t ≤ 4, and this means 0 ≤ x − 4 ≤ 4. That is, we have y = 3x − 12 for

4 ≤ x ≤ 8, which is a line segment.

8.
(
4
√

2, π/4
)

and
(
−4
√

2, 5π/4
)

will do, as well as
(
4
√

2,−7π/4
)

and many other possibilities.

9. Multiply both sides by r to get r2 = 8r sin θ. Now, since r2 = x2 + y2 and y = r sin θ, we obtain x2 + y2 = 8y.
Next we complete a square to see that we have a circle: x2 + (y2 − 8y) = 0 ⇒ x2 + (y2 − 8y + 16) = 16 ⇒
x2 + (y − 4)2 = 16. The circle is centered at (0, 4) and has radius 4.

10. Set f(θ) = sin 2θ. To find where horizontal tangent lines reside, find θ for which

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
=

2 cos 2θ sin θ + sin 2θ cos θ

2 cos 2θ cos θ − sin 2θ sin θ
= 0,

which entails solving 2 cos 2θ sin θ+ sin 2θ cos θ = 0. Using the supplied identities sin 2θ = 2 sin θ cos θ and cos 2θ =
cos2 θ − sin2 θ, the equation becomes (sin θ)(2 − 3 sin2 θ) = 0, so either sin θ = 0 or sin θ = ±

√
2/3. Solving

sin θ =
√

2/3 gives two solutions: θ1 = tan−1
√

2 (an angle in Quadrant I) and θ2 = π− tan−1
√

2 (in QII). Solving
sin θ = −

√
2/3 gives θ3 = π − tan−1(−

√
2) (in QIII) and θ4 = tan−1(−

√
2) (in QIV). Putting these angles into

r = sin 2θ gives four points:(
2
√

2

3
, tan−1

√
2

)
,
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√
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√
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)
,

(
2
√

2

3
, π − tan−1

(
−
√

2
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(
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(
−
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.

(These types of problems are seldom pleasant company.) Moving on to sin θ = 0, we obtain θ = 0, π, which yields
just one point: (0, 0).
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