MATH 141 EXAM #4 KEY (FALL 2011)

1a. Applying Ratio Test, $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(x+1)^{k+1}}{8^{k+1}} \cdot \frac{8^k}{(x+1)^k} \right| = \lim_{k \to \infty} \frac{|x+1|}{8} = \frac{|x+1|}{8}$, so series converges if $\frac{|x+1|}{8} < 1$, implying -8 < x+1 < 8 and thus -9 < x < 7. It remains to test the endpoints. When x = 7, $\lim_{k \to \infty} \left(\frac{x+1}{8}\right)^k = \lim_{k \to \infty} \left(\frac{7+1}{8}\right)^k = \lim_{k \to \infty} (1) = 1 \neq 0$, so the series diverges by the Divergence Test. When x = -9, $\lim_{k \to \infty} \left(\frac{x+1}{8}\right)^k = \lim_{k \to \infty} \left(\frac{-9+1}{8}\right)^k = \lim_{k \to \infty} (-1)^k \neq 0$, so again the series diverges. Therefore the interval of convergence is (-9, 7), and the radius of convergence is |-9-7|/2 = 8.

1b. Applying Ratio Test, $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(2x+3)^{k+1}}{6(k+1)} \cdot \frac{6k}{(2x+3)^k} \right| = \lim_{k \to \infty} \frac{k|2x+3|}{k+1} = |2x+3|$, so series converges if -1 < 2x + 3 < 1, implying -2 < x < -1. When x = -2 series becomes $\sum_{k=1}^{\infty} \frac{(-1)^k}{6k}$, which converges by the Alternating Series Test. When x = -1 series becomes $\sum_{k=1}^{\infty} \frac{1}{6k}$, which diverges since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. Interval of convergence is [-2, -1), radius of convergence is $\frac{1}{2}$.

2.
$$g(x) = 5 \cdot \frac{1}{1-6x} = \sum_{k=0}^{\infty} 5 \cdot (6x)^k$$
, which converges if and only if $|6x| < 1$, so the interval of convergence is $\left(-\frac{1}{6}, \frac{1}{6}\right)$.

3. Use the geometric series given in the previous problem to get $f(x) = \frac{1}{1 - (\sqrt{x} - 7)} = \frac{1}{8 - \sqrt{x}}$. The series converges if and only if $|\sqrt{x} - 7| < 1$, which solves to give $6 < \sqrt{x} < 8$ and then 36 < x < 64. So interval of convergence is (36, 64).

$$4a. \quad \frac{4^0}{0!}x^0 - \frac{4^2}{2!}x^2 + \frac{4^4}{4!}x^4 - \frac{4^6}{6!}x^6 + \dots = 1 - \frac{16}{2}x^2 + \frac{256}{24}x^4 - \frac{4096}{720}x^6 + \dots = 1 - 8x^2 + \frac{32}{3}x^4 - \frac{256}{45}x^6 + \dots$$

4b.
$$\sum_{k=0}^{\infty} \frac{(-1)^k 4^{2k}}{(2k)!} x^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k (4x)^{2k}}{(2k)!}.$$

4c. Use the Ratio Test to find that the interval of convergence is $(-\infty, \infty)$.

5. Using the Maclaurin series for $\tan^{-1}(x)$ that is given, we obtain:

$$\lim_{x \to 0} \frac{3\tan^{-1}x - 3x + x^3}{x^5} = \lim_{x \to 0} \frac{3\left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots\right) - 3x + x^3}{x^5}$$
$$= \lim_{x \to 0} \frac{\frac{3}{5}x^5 - \frac{3}{7}x^7 + \cdots}{x^5} = \lim_{x \to 0} \left(\frac{3}{5} - \frac{3}{7}x^2 + \cdots\right) = \frac{3}{5}$$

6. Use Ye Olde Remainder Theorem, which says: "Let $R_n = |S - S_n|$ be the remainder in approximating the value of a convergent alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ by the sum of its first *n* terms. Then $R_n \leq a_{n+1}$." But before we can use this theorem there is some work to do. Because the Maclaurin series for $\sin(x)$ is everywhere convergent it can be multiplied by 1/x termwise:

$$\frac{\sin(x)}{x} = \frac{1}{x} \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k+1)!}.$$

Now, the new series we obtain is also everywhere convergent, so it can be integrated termwise:

$$\int_{0}^{0.15} \frac{\sin(x)}{x} dx = \int_{0}^{0.15} \left[\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k}}{(2k+1)!} \right] dx = \sum_{k=0}^{\infty} \left[\int_{0}^{0.15} \frac{(-1)^{k} x^{2k}}{(2k+1)!} dx \right] = \sum_{k=0}^{\infty} \left[\frac{(-1)^{k} x^{2k+1}}{(2k+1)(2k+1)!} \right]_{0}^{0.15}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^{k} (0.15)^{2k+1}}{(2k+1)(2k+1)!} = \frac{0.15}{(1)(1)} - \frac{0.15^{3}}{(3)(3!)} + \frac{0.15^{5}}{(5)(5!)} - \frac{0.15^{7}}{(7)(7!)} + \cdots$$
$$\approx 0.15 - 1.875 \times 10^{-4} + 1.266 \times 10^{-7} - \cdots$$

The Remainder Theorem assures us that if we estimate the value of $\int_0^{0.15} \sin(x)/x \, dx$ by $0.15 - 1.875 \times 10^{-4} \approx 0.1498$ then the error will be no greater than 1.266×10^{-7} , and this is certainly within our accepted tolerance of 10^{-4} ! Therefore our estimate is 0.1498.

7. From $x = \sqrt{t} + 4$ comes $\sqrt{t} = x - 4$. Putting this into $y = 3\sqrt{t}$ gives y = 3(x - 4). Note that this will not be a line, since $0 \le t \le 16$ implies $0 \le \sqrt{t} \le 4$, and this means $0 \le x - 4 \le 4$. That is, we have y = 3x - 12 for $4 \le x \le 8$, which is a line segment.

8. $(4\sqrt{2}, \pi/4)$ and $(-4\sqrt{2}, 5\pi/4)$ will do, as well as $(4\sqrt{2}, -7\pi/4)$ and many other possibilities.

9. Multiply both sides by r to get $r^2 = 8r \sin \theta$. Now, since $r^2 = x^2 + y^2$ and $y = r \sin \theta$, we obtain $x^2 + y^2 = 8y$. Next we complete a square to see that we have a circle: $x^2 + (y^2 - 8y) = 0 \Rightarrow x^2 + (y^2 - 8y + 16) = 16 \Rightarrow x^2 + (y - 4)^2 = 16$. The circle is centered at (0, 4) and has radius 4.

10. Set $f(\theta) = \sin 2\theta$. To find where horizontal tangent lines reside, find θ for which

$$\frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta} = \frac{2\cos 2\theta\sin\theta + \sin 2\theta\cos\theta}{2\cos 2\theta\cos\theta - \sin 2\theta\sin\theta} = 0,$$

which entails solving $2\cos 2\theta \sin \theta + \sin 2\theta \cos \theta = 0$. Using the supplied identities $\sin 2\theta = 2\sin \theta \cos \theta$ and $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$, the equation becomes $(\sin \theta)(2 - 3\sin^2 \theta) = 0$, so either $\sin \theta = 0$ or $\sin \theta = \pm \sqrt{2/3}$. Solving $\sin \theta = \sqrt{2/3}$ gives two solutions: $\theta_1 = \tan^{-1} \sqrt{2}$ (an angle in Quadrant I) and $\theta_2 = \pi - \tan^{-1} \sqrt{2}$ (in QII). Solving $\sin \theta = -\sqrt{2/3}$ gives $\theta_3 = \pi - \tan^{-1}(-\sqrt{2})$ (in QIII) and $\theta_4 = \tan^{-1}(-\sqrt{2})$ (in QIV). Putting these angles into $r = \sin 2\theta$ gives four points:

$$\left(\frac{2\sqrt{2}}{3}, \tan^{-1}\sqrt{2}\right), \ \left(-\frac{2\sqrt{2}}{3}, \pi - \tan^{-1}\sqrt{2}\right), \ \left(\frac{2\sqrt{2}}{3}, \pi - \tan^{-1}\left(-\sqrt{2}\right)\right), \ \left(\frac{-2\sqrt{2}}{3}, \tan^{-1}\left(-\sqrt{2}\right)\right).$$

(These types of problems are seldom pleasant company.) Moving on to $\sin \theta = 0$, we obtain $\theta = 0, \pi$, which yields just one point: (0, 0).