MATH 141 ExaM #3 KeY (FALL 2011)
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1b. First we evaluate lim {/n = lim n'/™ = lim exp(lnnl/”) = exp ( lim lnnl/") = exp < lim nn) LI
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exp ( lim 1) =exp(0) = 1.
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Now, consider the subsequence of {a,}"2; that consists of the even-indexed terms, which can be denoted by
{an, }72, with ng = 2k for £ > 1. Then, using the fact that lim n'/™ =1, we have hm 0 Oy, = hm ( 1)”kn,1€/nk =
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Next, consider the subsequence consisting of the odd-indexed terms, which can be denoted by {an,}7>, with
ng = 2k — 1 for k > 1. Then we have lim a,, = lim (—1)*71(2k — 1)V/@*=D = Jim |—(2k — 1)1/@’“*1)} =1
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Since {a,} has two subsequences with different limits, the sequence {a,} itself cannot converge. That is, {a,}
diverges.

1 1 -1 1
lc. For all n > 1 we have —1 < cosn < 1, and thus —— < cosn < — for all n. Since lim — =0= lim —,
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by the Squeeze Theorem we conclude that li_)m = 0.
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3. Partial fraction decomposition gives CESIES) =7 1 iry so series becomes ; <I<:1 — k—{—)
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4. 1/k* <1073 is true for integers k > 5. By the Remainder Theorem, then, the absolute error will be less than
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1073 if we estimate the series by Z I + 2 33 + — ~ —0.7831.
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5a. lim ——— = — = 0, so series diverges by the Divergence Test.
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5b. lim ——— = lim = =1+ 0, so the series diverges by the Divergence Test.
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concludes that the series converges.
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5d. lim {/|agx| = lim 4/k2/2% = lim —— = 1/2 < 1, so Root Test concludes that the series converges.
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5e. Use the Limit Comparison Test on the series Z P and Z , starting the index k at 2 since, technically,

oo
the test requires the series involved to consist of positive terms. It’s known that Z 1/k diverges, so therefore
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— diverges also. Now, since lim = lim — =1 € (0,00), the LCT concludes that ——— must
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diverge. Therefore the original series Z —1 diverges
g g B19 ges.
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5f. For all k£ > 1 we have 13 < S and since Z = is a convergent p-series, it follows by the Direct
k=1
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Comparison Test that the series Z i3 converges.
6a. Since Ink and k are monotone increasing functions for k > 2, it follows that PRReR is monotone decreasing
n

(i.e. nonincreasing) for k > 2. Also lim = 0, and so by the Alternating Series Test the series converges.
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6b. Since lim |[(—=1)" {1+ — || = lim [ 1+ — | =1 # 0, the series diverges by the Divergence Test.



