
Math 141 Exam #1 Key (Fall 2011)

1. Set y = 5x− 9 and solve for x to get x = (y + 9)/5. Hence f−1(x) = (x+ 9)/5.

2. Set y = 3/(x2 + 6) and solve for x to get x2 + 6 = 3/y and thus x = ±
√

3/y − 6. If we assume x ≥ 0 then we
get x =

√
3/y − 6, and if we assume x ≤ 0 then we get x = −

√
3/y − 6. Thus one inverse is f−11 (x) =

√
3/x− 6

(the inverse of f restricted to [0,∞)), with Dom(f−11 ) = (0, 1/2]; and another inverse is f−12 (x) = −
√

3/x− 6 (the
inverse of f restricted to (−∞, 0]), with Dom(f−12 ) = (0, 1/2] also.

3. We’re not able to get f−1 directly, so we must employ the theorem as follows: “If f is one-to-one and differ-
entiable on an open interval I, a ∈ I, and f(a) = b, then (f−1)′(b) = 1/f ′(a) if f ′(a) 6= 0.” First we must find a
for which f(a) = 3, which requires solving a3 + a+ 1 = 3. This is a knotty equation to solve analytically but one
obvious solution is a = 1, and actually this is the only real solution since f (which is differentiable everywhere)
is seen to be one-to-one by examining its derivative: f ′(x) = 3x2 + 1 > 0 for all x ∈ R, so f must be strictly
increasing on R. Now, since f(1) = 3, we have (f−1)′(3) = 1/f ′(1) = 1/4.

4. Let f(x) = ln(ln(x)). Then f ′(x) = [ln(ln(x))]′ = ln′(ln(x)) · ln′(x) =
1

ln(x)
· 1

x
=

1

x ln(x)
. The domain for f ′

must first of all be a subset of Dom(f), where Dom(f) = {x : x ∈ Dom(ln) and ln(x) ∈ Dom(ln)}. Working this
out yields Dom(f) = {x : x > 0 and ln(x) > 0} = {x : x > 0 and x > 1} = (1,∞). Looking at the expression
for f ′(x) that we derived, we see that no other difficulties arise for any x > 1. So Dom(f ′) = (1,∞) also.

5. f ′(x) = esin(2x) · [sin(2x)]′ = esin(2x) · 2 cos(2x) = 2 cos(2x)esin(2x), and so f ′(π/4) = 2 cos(π/2)esin(π/2) = 0.

6a. Let u = x + 1, so x = u − 1 and du = dx, giving

∫ 4

1

2(u− 1)− 1

u
du =

∫ 4

1

(
2− 3

u

)
du = [2u− 3 ln |u|]41 =

[2(4)− 3 ln 4]− [2(1)− 3 ln 1] = 6− 3 ln 4.

6b. Let u = ex−e−x, so du = (ex+e−x)dx and we obtain

∫
ex + e−x

ex − e−x
dx =

∫
1

u
du = ln |u|+C = ln |ex−e−x|+C.

6c.

∫ 2

−2
4x dx =

∫ 2

−2
eln 4x dx =

∫ 2

−2
ex ln 4 dx =

[
1

ln 4
ex ln 4

]2
−2

=
1

ln 4

(
e2 ln 4 − e−2 ln 4

)
=

1

ln 4
(16− 1/16) =

255

16 ln 4
.

6d.

∫
5√

72 − x2
dx = 5 sin−1

(x
7

)
+ C.

7. We have ln[f(x)] = ln
[
(tanx)sinx

]
= (sinx) ln(tanx), and so, differentiating both sides, we obtain

f ′(x)

f(x)
=

(cosx) ln(tanx) + (sinx) · sec2 x

tanx
= (cosx) ln(tanx) + secx. Thus f ′(x) = f(x)[(cosx) ln(tanx) + secx], and finally

f ′(x) = (tanx)sinx[(cosx) ln(tanx) + secx].

8a. s′(t) = − sin(2t) · (2t)′ = − sin(2t) · 2t · ln 2 = −(2t ln 2) sin(2t).

8b. f ′(x) = 4 · 1

(x2 − 1) ln 3
· (x2 − 1)′ =

8x

(x2 − 1) ln 3



8c. g′(y) = − sin(sin−1(2y)) · (sin−1(2y))′ = − sin(sin−1(2y)) · 1√
1− (2y)2

· (2y)′ = − 4y√
1− 4y2

.

8d. h′(z) =
1

| ln z|
√

(ln z)2 − 1
· (ln z)′ = 1

z| ln z|
√

ln2 z − 1
.

9. lim
x→0+

(1 + x)cotx = lim
x→0+

exp
[
ln(1 + x)cotx

]
= exp

[
lim
x→0+

ln(1 + x)cotx
]

= exp

[
lim
x→0+

ln(1 + x)

tanx

]
. The limit is a

0/0 indeterminate form, so we use L’Hôpital’s Rule to get:

lim
x→0+

(1 + x)cotx = exp

[
lim
x→0+

1/(1 + x)

sec2 x

]
= exp

(
lim
x→0+

cos2 x

1 + x

)
= exp

(
cos2 0

1 + 0

)
= exp(1) = e.

10a. In the integration by parts formula, let u(x) = x2 and v′(x) = e4x, so that u′(x) = 2x and v(x) = 1
4e

4x.

We obtain:

∫
x2e4x dx =

x2

4
e4x −

∫
2x · 1

4
e4x dx =

x2

4
e4x − 1

2

∫
xe4x dx. To resolve the last integral we employ

integration by parts a second time: letting u(x) = x and v′(x) = e4x, so that u′(x) = 1 and v(x) = 1
4e

4x, we

obtain:

∫
xe4x dx =

x

4
e4x −

∫
1

4
e4x dx =

x

4
e4x − 1

16
e4x + C. Finally, at long last, we find that

∫
x2e4x dx =

x2

4
e4x − 1

2

(
x

4
e4x − 1

16
e4x + C

)
=

(
x2

4
− x

8
+

1

32

)
e4x + C =

e4x

32
(8x2 − 4x+ 1) + C.

10b. Let u(x) = x and v′(x) = cos 2x, so that u′(x) = 1 and v(x) = 1
2 sin 2x, and integration by parts yields:∫ π/2

0
x cos 2x dx =

1

2
[x sin 2x]

π/2
0 − 1

2

∫ π/2

0
sin 2x dx = −1

2

[
−1

2
cos 2x

]π/2
0

=
1

4
(cosπ − cos 0) = −1

2

2


