1. (a) 10 pts. Find the quadratic approximating polynomial for $f(x)=\sqrt{x}$, centered at $a=4$.
(b) 5 pts. Use the quadratic approximating polynomial to approximate $\sqrt{3.88}$.
2. 10 pts. Use the remainder term to find a bound on the absolute error of the approximation

$$
\sqrt{1+x} \approx 1+\frac{x}{2}
$$

on the interval $[-0.12,0.14]$.
3. 10 pts. each Determine the interval of convergence of the power series.
(a) $\sum \frac{(-1)^{n} n^{2}}{(n+1)!}(x+3)^{n}$
(b) $\sum \frac{6^{n}}{\sqrt{n}} x^{n}$
(c) $\sum \frac{(-1)^{n}}{n^{2} 3^{n}}(x-2)^{n}$
4. 15 pts . Find a power series representation centered at 0 for the function

$$
f(x)=\ln \sqrt{1-x^{2}}
$$

and determine the interval of convergence of the series.
5. 10 pts. Find the first four nonzero terms of the binomial series centered at 0 for

$$
f(x)=(1+2 x)^{3 / 4}
$$

6. 10 pts. Use Maclaurin series (see table on other side) to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x \arctan x} .
$$

7. 10 pts. Approximate the value of the definite integral with an absolute error less than 10^{-4} :

$$
\int_{0}^{1} \sin \sqrt{x} d x
$$

8. 10 pts . Express the curve given by the parametric equations

$$
x(t)=\sec t, \quad y(t)=\tan t, \quad 0 \leq t \leq \pi / 4
$$

by an equation in x and y (i.e. a Cartesian equation).
9. 10 pts. Write the equation $(x-4)^{2}+y^{2}=16$ in polar coordinates, and give an interval of θ values that traces the graph of the circle precisely once.

Maclaurin Series for Some Common Functions:
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, for $|x|<1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, for $|x|<\infty$
$\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, for $|x|<\infty$
$\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, for $|x|<\infty$
$\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$, for $-1<x \leq 1$
$\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$, for $|x| \leq 1$
$(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}$, for $|x|<1$, where $\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!}$ and $\binom{p}{0}=1$.

Some Trigonometric Identities:
$\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$.

