1. 10 pts. Approximate $\sqrt{9.3}$ with a 3rd-order Taylor polynomial having an appropriate center.
2. 10 pts. each Determine the interval of convergence of the power series.
(a) $\sum \frac{2^{2 n} x^{n}}{n^{2}}$
(b) $\sum \frac{(x+1)^{n}}{n \cdot 6^{n}}$
(c) $\sum n!(x-3)^{n}$
3. 15 pts . Find a power series representation for the function

$$
f(x)=\frac{2 x}{1-x^{4}},
$$

and determine the interval of convergence.
4. 15 pts . Find a power series representation for the function $f(x)=\sqrt{1+x}$, determine the interval of convergence, and write out the first four nonzero terms of the series.
5. 10 pts. Use Taylor series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}
$$

6. 10 pts . Use a Taylor series to approximate the value of the definite integral

$$
\int_{0}^{1 / 3} e^{-x^{2}} d x
$$

with an absolute error less than 10^{-4}.
7. 10 pts. each Consider the parametric equations

$$
x=\sqrt[3]{t^{8}-8}, \quad y=\sqrt{t^{4}+1}
$$

for $-\infty<t<\infty$.
(a) What is the slope of the curve at the point corresponding to $t=0$?
(b) Eliminate the parameter to obtain an equation in x and y.
8. 10 pts. An object moves along a straight path from the point $(-2,5)$ at time $t=0$ to the point $(2,-1)$ at time $t=10$. Find a parametric description of the object's path.
9. 10 pts . Convert the polar equation to Cartesian coordinates:

$$
r=\frac{2}{4 \cos \theta+3 \sin \theta}
$$

Alternating Series Estimation Theorem: If $\sum(-1)^{k+1} b_{k}$ is a convergent alternating series such that $0 \leq b_{k+1} \leq b_{k}$ for all k, then $R_{n} \leq b_{n+1}$ for all n.

Maclaurin Series for Some Common Functions:
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, for $|x|<1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, for $|x|<\infty$
$\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, for $|x|<\infty$
$\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, for $|x|<\infty$
$\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$, for $-1<x \leq 1$
$\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$, for $|x| \leq 1$
$(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}$, for $|x|<1$, where $\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!}$ and $\binom{p}{0}=1$.

Some Trigonometric Identities:

$\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$.

