1. Find the derivative of each function.

(a)
$$f(x) = \ln(x + \ln x)$$

(b)
$$g(t) = te^{3t^2}$$

(c)
$$y = \sin^{-1}(x^4)$$

2. Evaluate each integral.

(a)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

(b)
$$\int \frac{4}{x^2 + 3} \, dx$$

$$(c) \int_1^{e^2} x^2 \ln x \, dx$$

(d)
$$\int \sin^5 x \cos^{-2} x \, dx$$

(e)
$$\int \frac{1}{(1+4x^2)^{3/2}} \, dx$$

$$(f) \int \frac{2}{x^2 - x - 6} \, dx$$

3. Evaluate the integral, or state that it diverges:
$$\int_0^\infty e^{-5x} dx$$

4. Find the limit of the sequence, or state that it diverges:
$$\left\{ \left(1 + \frac{2}{n}\right)^n \right\}$$

5. Evaluate the series, or state that it diverges: $\sum_{k=1}^{\infty} \frac{5}{3^k}$

6. Determine whether the series converges or diverges, giving a clear justification for your answer using any one of the following: Divergence Test, Integral Test, Comparison Test, Limit Comparison Test, Ratio Test, Root Test, Alternating Series Test, or properties of the *p*-series. Specify the test being used.

(a)
$$\sum_{k=0}^{\infty} \frac{k}{100k+3}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k}{\sqrt{k^2 + 4}}$$

(c)
$$\sum_{k=1}^{\infty} \frac{k^6}{k!}$$

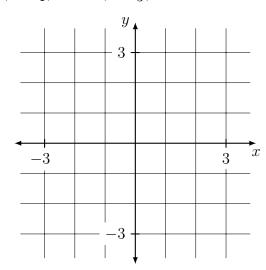
$$(d) \sum_{k=1}^{\infty} \frac{k^2}{2^k}$$

(e)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k^2 + 4}}$$

8. Find the first 4 terms of the Maclaurin series expansion for
$$e^{x/3}$$
.

9. Find parametric equations for the circle centered at the origin with radius 6, generated counterclockwise.

10. Plot the polar points $(2, \pi)$, $(3, -\frac{\pi}{4})$, and $(-2, \frac{\pi}{3})$ on the rectangular coordinate system below.



11. Convert the rectangular coordinates $(2,2\sqrt{3})$ to polar coordinates.

12. Convert the equation $r = \cot \theta \csc \theta$ to rectangular coordinates.