1. 10 pts. Approximate the quantity $\sqrt{1.06}$ using a 3rd-order Taylor polynomial centered at 1.
2. 10 pts. each Determine the interval of convergence of the power series, making sure to test endpoints.
(a) $\sum \frac{n^{2} x^{2 n}}{n!}$
(b) $\sum \frac{(x-2)^{n}}{n}$
(c) $\sum \frac{2^{n}}{n}(4 x-8)^{n}$
3. 10 pts . Find the function represented by the series

$$
\sum_{n=0}^{\infty}\left(\frac{3}{2 x^{2}+1}\right)^{n}
$$

and give the interval of convergence.
4. Let $f(x)=1 / x$.
(a) 10 pts. Find the first four nonzero terms of the Taylor series for f centered at -3 .
(b) 5 pts. Write the Taylor series using summation notation.
5. 10 pts . Use a Taylor series to approximate the value of the definite integral

$$
\int_{0}^{1 / 3} e^{-x^{2}} d x
$$

with an absolute error less than 10^{-10}.
6. 10 pts. Consider the parametric equations

$$
x=\sqrt[5]{t}-2, \quad y=t+1 ; \quad 0 \leq t \leq 32
$$

Eliminate the parameter to obtain an equation of the form $y=f(x)$. What is the domain of f ?
7. 10 pts . Find a parametric description of the line segment from the point $(8,2)$ to the point $(-2,-3)$.
8. 10 pts. Convert the polar equation $r=2 \sin \theta+2 \cos \theta$ to Cartesian coordinates.
9. 10 pts. Find the area of the region inside the limaçon $r=2+\cos \theta$.

Alternating Series Estimation Theorem: If $\sum(-1)^{k+1} b_{k}$ is a convergent alternating series such that $0 \leq b_{k+1} \leq b_{k}$ for all k, then $R_{n} \leq b_{n+1}$ for all n.

Maclaurin Series for Some Common Functions:
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, for $|x|<1$ (Geometric Series)
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, for $|x|<\infty$
$\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, for $|x|<\infty$
$\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, for $|x|<\infty$
$\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$, for $-1<x \leq 1$
$\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$, for $|x| \leq 1$

Some Trigonometric Identities:

$\sin (2 \theta)=2 \sin \theta \cos \theta$
$\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$

