1 Find the critical points for $f(x)=4 x^{1 / 2}-x^{5 / 2}$ on $[0,4]$, then find the absolute maximum and absolute minimum for f on $[0,4]$.

We first note that $f^{\prime}(x)=2 x^{-1 / 2}-\frac{5}{2} x^{3 / 2}$ exists for all $x \in(0,4)$. However, $f^{\prime}(x)=0$ does have one solution in $(0,4)$, which is $x=2 / \sqrt{5}$. This is the only critical point. Now we evaluate $f(0)=0, f(4)=-24, f(2 / \sqrt{5}) \approx 3.026$, and conclude that f has absolute maximum $f(2 / \sqrt{5}) \approx 3.026$ and absolute minimum $f(4)=-24$.

2 Determine whether the Mean Value Theorem applies to $f(x)=\frac{x}{2 x+3}$ on $[-1,2]$. If so, find all points that are guaranteed by the theorem to exist.

Since f is continuous on $[-1,2]$ and differentiable on $(-1,2)$, the Mean Value Theorem does apply. The theorem implies there exists some $c \in(-1,2)$ such that

$$
\frac{3}{(2 c+3)^{2}}=f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}=\frac{3}{7}
$$

which solves to give $c=\frac{-3 \pm \sqrt{7}}{2} \approx-2.82,-0.177$. Finally we note that $\frac{-3+\sqrt{7}}{2} \approx-0.177$ lies in $(-1,2)$.

3 Find the intervals on which the function $g(x)=\frac{3 x}{x^{2}+2}$ is increasing, and the intervals on which it is decreasing.

First we find that

$$
g^{\prime}(x)=\frac{6-3 x^{2}}{\left(x^{2}+2\right)^{2}}
$$

By the Increasing/Decreasing Test (also called the Monotonicity Test), g is increasing on any interval I on which $g^{\prime}(x)>0$ for all $x \in I$. But $g^{\prime}(x)>0$ only holds when $6-3 x^{2}>0$, or $x^{2}<2$, which has solution set $(-\sqrt{2}, \sqrt{2})$. Next, g is decreasing wherever $g^{\prime}(x)<0$, or $x^{2}>2$, which has solution set $(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$.

Therefore g is increasing on $(-\sqrt{2}, \sqrt{2})$, and decreasing on $(-\infty,-\sqrt{2})$ and $(\sqrt{2}, \infty)$.

