Math 140 Quiz \#4 (Fall 2020)

1 Evaluate the integral $\int\left(\frac{1}{x^{2}}-\frac{2}{x^{5 / 2}}\right) d x$.
Using the Power Rule for integration,

$$
\int\left(\frac{1}{x^{2}}-\frac{2}{x^{5 / 2}}\right) d x=-x^{-1}-2 \cdot \frac{-2}{3} x^{-3 / 2}+C=-\frac{1}{x}+\frac{4}{3 x^{3 / 2}}+C .
$$

2 Evaluate the integral $\int \frac{1+\tan \theta}{\sec \theta} d \theta$.
With a couple simple trigonometric identities we get

$$
\int \frac{1+\tan \theta}{\sec \theta} d \theta=\int(\cos \theta+\sin \theta) d \theta=\sin \theta-\cos \theta+C .
$$

3 Using a right Riemann sum and five rectangles, approximate the area under the curve $f(x)=x^{2}+2$ between $x=1$ and $x=6$, rounding to the nearest hundredth if necessary.

Each rectangle would have width $\Delta x=(6-1) / 5=1$, and the k th rectangle would have height $f(k+1)$ for integers $1 \leq k \leq 5$. Area estimate is

$$
\sum_{k=1}^{5} f(k+1) \Delta x=\sum_{k=1}^{5}\left[(k+1)^{2}+2\right]=6+11+18+27+38=100
$$

No rounding necessary.

