Math 140 Quiz \#3 (Fall 2020)

1 Find the absolute extrema of $f(x)=4 x^{3}-21 x^{2}+36 x$ on the interval [1,3].
First we find the derivative to be

$$
f^{\prime}(x)=12 x^{2}-42 x+36=6(2 x-3)(x-2),
$$

and so $\frac{3}{2}, 2 \in(1,3)$ are critical points where $f^{\prime}(x)=0$. Now, $f(1)=19, f\left(\frac{3}{2}\right)=20.25$, $f(2)=20$, and $f(3)=27$, and so there is an absolute minimum at $(1, f(1))=(1,19)$ and an absolute maximum at $(3, f(3))=(3,27)$.

2 Determine whether Rolle's Theorem applies to $h(x)=\sqrt{x}$ on the interval [0, a] for any $a>0$. If it does, find all points guaranteed to exist by the theorem. If it doesn't, explain why.

The theorem does not apply since, for any $a>0, h(a)=\sqrt{a}>\sqrt{0}=0=h(0)$, and so $h(a) \neq h(0)$.

3 Determine whether the Mean Value Theorem applies to $h(x)=\sqrt{x}$ on the interval $[0, a]$ for any $a>0$. If it does, find all points guaranteed to exist by the theorem. If it doesn't, explain why.

Function f is continuous on $[1,3]$ and differentiable on $(1,3)$, so the Mean Value Theorem applies and states that there is some $1<c<3$ such that

$$
1-\frac{1}{c^{2}}=f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}=\frac{\frac{10}{3}-2}{2}=\frac{2}{3}
$$

We have $1 / c^{2}=1 / 3$, so $c^{2}=3$, and hence $c= \pm \sqrt{3}$. We now note that $\sqrt{3} \in(1,3)$.

