## Math 140 Quiz \#1 (Fall 2020)

1a Evaluate the limit $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}$, or state it does not exist.

$$
\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+1)}{x-3}=\lim _{x \rightarrow 3}(x+1)=4
$$

1b Evaluate the $\operatorname{limit} \lim _{x \rightarrow 0} \frac{x}{\sqrt{16 x+1}-1}$, or state it does not exist.

$$
\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt{16 x+1}-1} \cdot \frac{\sqrt{16 x+1}+1}{\sqrt{16 x+1}+1}\right)=\lim _{x \rightarrow 0} \frac{\sqrt{16 x+1}+1}{16}=\frac{\sqrt{1}+1}{16}=\frac{1}{8}
$$

2a Evaluate the limit $\lim _{x \rightarrow-2^{+}} \frac{x-4}{x(x+2)}$ as a real number, or as $\pm \infty$, or state it does not exist.

$$
\lim _{x \rightarrow-2^{+}} \frac{x-4}{x(x+2)}=\frac{-6}{(-2)\left(\rightarrow 0^{+}\right)}=+\infty
$$

2b Evaluate the limit $\lim _{x \rightarrow-2^{-}} \frac{x-4}{x(x+2)}$ as a real number, or as $\pm \infty$, or state it does not exist.

$$
\lim _{x \rightarrow-2^{-}} \frac{x-4}{x(x+2)}=\frac{-6}{(-2)\left(\rightarrow 0^{-}\right)}=-\infty
$$

2c Evaluate the limit $\lim _{x \rightarrow-2} \frac{x-4}{x(x+2)}$ as a real number, or as $\pm \infty$, or state it does not exist.
Does not exist, since the one-sided limits are unequal.

3 Evaluate the limit $\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}-x-2}}$, or state it does not exist.
For $x \rightarrow \infty$ we have $|x|=-x$, and so

$$
\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}-x-2}}=\lim _{x \rightarrow-\infty} \frac{2 x}{|x| \sqrt{1-1 / x-2 / x^{2}}}=\lim _{x \rightarrow-\infty} \frac{-2}{\sqrt{1-1 / x-2 / x^{2}}}=-2
$$

