1. 5 pts . Write the following as a definite integral:

$$
\lim _{\Delta \rightarrow 0} \sum_{j=1}^{n}\left[9+5\left(x_{j}^{*}\right)^{3}\right] \Delta x_{j} \text { on }[-7,4] .
$$

2. 10 pts. each Use geometry, rather than Riemann sums, to evaluate each integral.
(a) $\int_{-2}^{3}|y| d y$
(b) $\int_{0}^{4} \sqrt{8 \xi-\xi^{2}} d \xi$ (Hint: complete the square)
3. 5pts. each Suppose $\int_{1}^{4} \varphi(t) d t=-6, \int_{1}^{4} \psi(t) d t=4$, and $\int_{3}^{4} \varphi(t) d t=2$. Evaluate the following integrals, or state there is not enough information.
(a) $-\int_{4}^{1}-3 \varphi(t) d t$,
(b) $\int_{1}^{4} \varphi(t) \psi(t) d t$,
(c) $\int_{1}^{3} \varphi(t) d t$.
4. 10 pts. each Evaluate each definite integral using the Fundamental Theorem of Calculus.
(a) $\int_{1}^{4} \frac{w-2}{\sqrt{w}} d w$
(b) $\int_{\pi / 4}^{\pi / 2} \csc ^{2} \theta d \theta$
5. 10 pts. Simplify the expression: $\frac{d}{d x} \int_{2 x}^{0} \frac{d t}{t^{2}+\sin t}$.
6. 10 pts. each Use a change of variables (substitution) to find the following.
(a) $\int \frac{x}{\sqrt{4-9 x^{2}}} d x$
(b) $\int \sin \alpha \sec ^{6} \alpha d \alpha$
(c) $\int_{0}^{2} 2 r^{3} \sqrt{16-r^{4}} d r$
7. 10 pts. Find the area of the region bounded by the graphs of $y=3 x-x^{2}, y=x$, and $x=3$.
8. 10 pts . What's the volume of the region of space with base consisting of the triangle with corners at $(0,0),(3,0)$, and $(0,3)$, and with cross sections at right angles to the base and parallel to the $y$-axis that are semicircles? Use a method covered by the homework.
9. 10 pts. Use an appropriate method to get the volume of the spatial region created by spinning about the $x$-axis the area enclosed by the graphs of $y=\sqrt{25-x^{2}}, y=0, x=2$, and $x=4$.
10. 10 pts . Find the length of the graph of

$$
C(x)=\frac{\left(x^{2}+2\right)^{3 / 2}}{3}
$$

for $-6 \leq x \leq-2$.

