1. 10 pts. each Use differentiation rules to find the derivative of each function.
(a) $r(t)=3 \sqrt[3]{t}-\frac{3}{4} t^{8}-t+10$
(b) $G(\ell)=\frac{2 \ell-1}{\sqrt{\ell}+2}$
(c) $f(x)=x \sin x \cos x$
(d) $y=\frac{\cot x}{1+\csc x}$
2. 10 pts . Determine the constants A and B so that the line tangent to

$$
f(x)=x^{2}+A x+B
$$

at $x=2$ is $y=4 x+2$.
3. 10 pts. each Find the derivative of the function using the Chain Rule.
(a) $y=\left(2 x^{6}+x\right)^{8}$
(b) $y=\tan \sqrt{x}$
(c) $h(x)=\sec ^{4}(\cos 5 x)$
4. 10 pts. Use implicit differentiation to find $d y / d x$, given that

$$
(x y+1)^{3}=x-y^{2}+8 .
$$

5. 15 pts. Find an equation of the tangent line to the curve given by

$$
\cos (x-y)+\sin y=\sqrt{2}
$$

at the point $(\pi / 2, \pi / 4)$.
6. 10 pts . The height of a triangle is decreasing at a rate of $2 \mathrm{~cm} / \mathrm{min}$ while the area is increasing at a rate of $3 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the height is 12 cm and the area is $150 \mathrm{~cm}^{2}$?
7. 15 pts . An inverted conical water tank with a height of 12 ft and a radius of 6 ft is drained through a hole at the vertex at a rate of $2 \mathrm{ft}^{3} / \mathrm{s}$. What is the rate of change of the water depth when the water depth is 3 ft ? (Hint: Use similar triangles.)

