1. 10 pts . Use geometry (not Riemann sums) to evaluate the integral $\int_{0}^{6} \sqrt{36-x^{2}} d x$.
2. 4 pts. each Suppose $f(x) \geq 0$ on [0, 2], $f(x) \leq 0$ on [2,5], $\int_{0}^{2} f(x) d x=6$, and $\int_{2}^{5} f(x) d x=-8$. Evaluate the following:
(a) $\int_{0}^{5} f(x) d x$,
(b) $\int_{0}^{5}|f(x)| d x$,
(c) $\int_{2}^{5} 4|f(x)| d x$.
3. 10 pts. each Evaluate each definite integral using the Fundamental Theorem of Calculus.
(a) $\int_{1}^{4} \frac{x-2}{\sqrt{x}} d x$
(b) $\int_{\pi / 4}^{\pi / 2} \csc ^{2} \theta d \theta$
4. 10 pts. Simplify the expression: $\frac{d}{d x} \int_{x}^{0} \frac{d p}{p^{2}+1}$.
5. 10 pts. each Use a change of variables (substitution) to find the following.
(a) $\int \frac{x}{\sqrt{4-9 x^{2}}} d x$
(b) $\int \sin (x) \sec ^{8}(x) d x$
(c) $\int_{0}^{2} x^{3} \sqrt{16-x^{4}} d x$
6. 10 pts. Find the area of the region enclosed by the curves $y=3 x-x^{2}, y=x$, and $x=3$.
7. 10 pts . Use the General Slicing Method to find the volume of the solid whose base is the triangle with vertices $(0,0),(3,0)$, and $(0,3)$, and whose cross sections perpendicular to the base and parallel to the y-axis are semicircles.
8. 10 pts. Use the Disc Method or Washer Method (whichever is appropriate) to find the volume of the solid generated by revolving about the x-axis the region bounded by the curves $y=\sqrt{25-x^{2}}$, $y=0, x=2$, and $x=4$.
9. 10 pts. Use the Shell Method to find the volume of the solid generated by revolving about the y-axis the region bounded by the curves $y=x^{3}-x^{8}+1$ and $y=1$.
10. 10 pts. Find the length of the curve given by $y=\frac{1}{3}\left(x^{2}+2\right)^{3 / 2}$ for $x \in[1,2]$.
