1. 10 pts. each Use differentiation rules to find the derivative of each function.
(a) $s(t)=4 \sqrt{t}-\frac{1}{4} t^{4}+t+1$
(b) $f(x)=\frac{x^{4}+1}{x^{2}-1}$
(c) $y=\sin x \tan x$
(d) $y=\frac{2 \cos x}{1+\sin x}$
2. 10 pts . Let $f(x)=2 x^{3}-3 x^{2}-12 x+4$. Find all points on the graph of $f$ at which the tangent line has slope 60.
3. 10 pts. each Find the derivative of the function using the Chain Rule.
(a) $y=\left(4 x-3 x^{5}\right)^{16}$
(b) $y=\tan \sqrt{x}$
(c) $h(x)=\sin ^{4}(\cos 7 x)$
4. 10 pts. Use implicit differentiation to find $d y / d x$, given that

$$
x^{3}=\frac{x+y}{x-y} .
$$

5. 10 pts . Find an equation of the tangent line to the curve given by

$$
x y^{5 / 2}+x^{3 / 2} y=12
$$

at the point $(4,1)$.
6. 10 pts. The height of a triangle is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the height is 12 cm and the area is $150 \mathrm{~cm}^{2}$ ?
7. 10 pts . A 13 - ft ladder is leaning against a vertical wall when Vladimir begins pulling the foot of the ladder away from the wall at a rate of $0.5 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder sliding down the wall when the foot of the ladder is 5 ft from the wall?

