1. 2 pts. each For any real number x let $\lfloor x\rfloor$ be the greatest integer less than or equal to x. Evaluate each of the following limits:

$$
\lim _{x \rightarrow 3^{-}}\lfloor x\rfloor, \quad \lim _{x \rightarrow 3^{+}}\lfloor x\rfloor, \quad \lim _{x \rightarrow-6^{-}}\lfloor x\rfloor, \quad \lim _{x \rightarrow-6^{+}}\lfloor x\rfloor, \quad \lim _{x \rightarrow 0.9}\lfloor x\rfloor .
$$

2. 10 pts. each Evaluate each limit algebraically using limit laws, showing work.
(a) $\lim _{x \rightarrow b} \frac{(x-b)^{40}-x+b}{b-x}, \quad b$ a fixed real number.
(b) $\lim _{w \rightarrow 1}\left(\frac{1}{w^{2}-w}-\frac{1}{w-1}\right)$
(c) $\lim _{x \rightarrow 4} \frac{3(x-4) \sqrt{x+5}}{3-\sqrt{x+5}}$
(d) $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin ^{2} x}$
3. 10 pts Suppose

$$
p(x)= \begin{cases}3 x+r, & x<-2 \\ x-12, & x>-2\end{cases}
$$

Determine a value for r for which the $\operatorname{limit} \lim _{x \rightarrow-2} p(x)$ exists, and state the value of the limit.
4. 4pts. each Determine the following limits:

$$
\lim _{x \rightarrow 3^{-}} \frac{-5}{(x-3)^{3}}, \quad \lim _{t \rightarrow-2^{+}} \frac{t^{3}-5 t^{2}+6 t}{t^{4}-4 t^{2}}, \quad \lim _{\theta \rightarrow 0^{-}} \csc \theta
$$

5. 10 pts . Find all vertical asymptotes $x=a$ of the function

$$
f(x)=\frac{x+1}{x^{3}-4 x^{2}+4 x} .
$$

For each value of a determine $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{-}} f(x)$, and $\lim _{x \rightarrow a} f(x)$.
6. 10 pts. Evaluate the limit

$$
\lim _{x \rightarrow \infty} \frac{4 x^{2}-7}{8 x^{2}+5 x+2}
$$

7. 15 pts. Determine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ for

$$
f(x)=\frac{\sqrt{x^{2}+1}}{2 x+1}
$$

Then give the horizontal asymptotes of f, if any.
8. 10 pts . Let g be given by

$$
g(x)= \begin{cases}x^{2}-2 x, & \text { if } x<1 \\ a, & \text { if } x=1 \\ 3 x+9, & \text { if } x>1\end{cases}
$$

Find the value of a for which g is continuous from the left at 1 , and the value of a for which g is continuous from the right at 1 .
9. 10 pts. Use the precise definition of limit to prove that

$$
\lim _{x \rightarrow 8}(4 x-5)=27
$$

10. Let $f(x)=\sqrt{x+3}$.
(a) 10 pts . Use the limit definition of a derivative to find $f^{\prime}(1)$.
(b) 5 pts. Determine an equation for the tangent line to the graph of f at the point $(1,2)$.
11. 15 pts . Use the limit definition of a derivative to find $f^{\prime}(x)$ given that

$$
f(x)=\frac{1}{x+2}
$$

