
NAME:

- Use the graph below to find the following limits, if they exist. If a limit does not exist, explain why.

- (a) $\lim_{x \to 1^{-}} h(x)$ (b) $\lim_{x \to 1^{+}} h(x)$ (c) $\lim_{x \to 1} h(x)$ (d) $\lim_{x \to 3^{-}} h(x)$ (e) $\lim_{x \to -2} h(x)$

2. 10 pts. each Evaluate each limit.

(a)
$$\lim_{r\to 3} (r^4 - 7r + 4)^{2/3}$$

(b)
$$\lim_{t \to -2} \left(\frac{t^2}{t+2} + \frac{2t}{t+2} \right)$$

(c)
$$\lim_{x \to 0} \frac{\sqrt{2x^2 + 25} - 5}{x^2}$$

Suppose the function g satisfies the inequality 3. 10 pts.

$$x^2 - 5x - 2\cos x \le g(x) \le \sin x - 2$$

for all $x \in (0,1)$. Use the Squeeze Theorem to evaluate $\lim_{x\to 0^+} g(x)$.

4. 15 pts. For

$$f(x) = \frac{4x^3}{2x^3 + \sqrt{9x^6 + 15x^4}},$$

evaluate $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$, and identify any horizontal asymptotes of f.

5. 10 pts. Show that f is not continuous at 4.

$$f(x) = \begin{cases} x^2 - 5, & \text{if } x \neq 4 \\ 13, & \text{if } x = 4 \end{cases}$$

6. 15 pts. Let g be given by

$$g(x) = \begin{cases} x^2 + x, & \text{if } x < 1\\ a, & \text{if } x = 1\\ 3x + 5, & \text{if } x > 1 \end{cases}$$

Find the value of a for which g is continuous from the left at 1, and the value of a for which g is continuous from the right at 1. Is there an a value for which g is continuous at 1?

- 7. Let $f(x) = \sqrt{3x+1}$.
 - (a) 15 pts. Use the definition of derivative to find f'(1).
 - (b) 5 pts. Determine an equation for the tangent line to the graph of f at (1,2).
- 8. 10 pts. each Use differentiation rules to find the derivative of each function.

(a)
$$f(x) = (5x^4 + 3x^2 + 1)(x^3 + 7)$$

(b)
$$g(t) = \frac{t^2 - 1}{t^2 + 1}$$

(c)
$$y = \sin x \tan x$$

(d)
$$y = \frac{2\cos x}{1 + \sin x}$$

9. $\boxed{5 \text{ pts. each}}$ The position (in meters) of an object at time t (in seconds) is given by

$$s(t) = 2t^3 - 21t^2 + 60; \quad 0 < t < 6.$$

- (a) Find the object's velocity function. When is the object at rest?
- (b) Find the object's acceleration function. When is the object's acceleration positive, and when is it negative?