Math 140 Summer 2012 Exam 3

- 1. Let $f(x) = \sqrt[5]{x}$.
 - (a) 10 pts. Write the equation of the line L that represents the linear approximation to f at x = 32.
 - (b) 5 pts. Use L to estimate $\sqrt[5]{33}$
- 2. 15 pts. Show, using appropriate theorems,¹ that the equation $2x 1 \sin x = 0$ has exactly one real root.
- 3. 10 pts. each Determine the following indefinite integrals, using substitution when necessary.

(a)
$$\int (3x^{-2} - 4x^2 + 1)dx$$

(b) $\int [\cos(4t) - \sin(t/4)]dt$
(c) $\int \frac{2x^2}{\sqrt{1 - 4x^3}}dx$

- 4. 10 pts. Find the solution to the initial value problem f'(x) = 8x 5; f(0) = 4.
- 5. 10 pts. The velocity of an object (in meters per second) is given by v(t) = 1/(2t + 1). Approximate the object's displacement during the time interval $0 \le t \le 10$ by subdividing the interval into 5 subintervals, using the midpoint of each subinterval to compute the height of the rectangles.
- 6. 10 pts. Identify f and express the limit as a definite integral on the interval given:

$$\lim_{\Delta \to 0} \sum_{k=1}^{n} \bar{x}_k \cos \bar{x}_k \,\Delta x_k \,; \ [1,2].$$

NAME:

7. 5 pts. each Suppose that $\int_0^3 f(x)dx = 2$, $\int_3^6 f(x)dx = -9$ and $\int_3^6 g(x)dx = 5$. Evaluate the following.

(a)
$$\int_{0}^{3} 5f(x)dx$$

(b) $\int_{3}^{6} [3f(x) - g(x)]dx$
(c) $\int_{6}^{3} [f(x) + 2g(x)]dx$

8. 15 pts. Use the *definition* of the definite integral to evaluate $\int_{2}^{6} (3x^2 - 5)dx$

9. 10 pts. Simplify
$$\frac{d}{dx} \int_{7}^{x^4} \sin^5(t) dt$$

10. 10 pts. Evaluate each with the Fundamental Theorem of Calculus, using substitution where necessary.

(a)
$$\int_{1}^{4} \frac{5t^{6} - \sqrt{t}}{t^{2}} dt$$

(b)
$$\int_{0}^{\pi/2} \sin^{2}\theta \cos\theta \, d\theta$$

- 11. 10 pts. Find the area of the region bounded by the curves $f(x) = 2x^2$ and $g(x) = x^2 + 4$
- 12. 10 pts. Let \mathcal{R} be the region in the first quadrant bounded by the curves $y = 4 x^2$, y = 0, and x = 0. Find the volume of the solid generated by revolving \mathcal{R} about the *x*-axis.

¹This means doodling a graph and pointing and hooting at it will not suffice.