Name:

1. 10 pts. each Find the critical numbers of the function.

(a)
$$s(t) = 3t^4 + 4t^3 - 6t^2$$

(b)
$$f(x) = x^{4/5}(x-4)^2$$

2. 10 pts. each Find the absolute maximum and absolute minimum values of f on the given interval.

(a)
$$f(x) = x^4 - 2x^2 + 3$$
, $[-2,3]$

(b)
$$f(x) = \sin x + \cos x$$
, $[0, \pi/3]$

- 3. 10 pts. Verify that the function $f(x) = \frac{x}{x+2}$ satisfies the hypotheses of the Mean Value Theorem on the interval [1,4]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
- 4. 10 pts. each Let $h(x) = 3x^5 5x^3 + 3$.
 - (a) Find the intervals of increase and decrease.
 - (b) Find the local maximum and minimum values.
 - (c) Find the intervals of concavity and the inflection points.
- 5. 10 pts. each Find the limit.

(a)
$$\lim_{y \to \infty} \frac{2 - 3y^2}{5y^2 + 4y}$$

(b) $\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{2x + 1}$

(c)
$$\lim_{x \to \infty} \left(\sqrt{x^4 + 6x^2} - x^2 \right)$$

6. 15 pts. Find the point on the line y = 2x - 9 that is closest to the point (5, -2).

- 7. 15 pts. A cylindrical can without a top is made to contain $V \text{ cm}^3$ of liquid. Find the dimensions that will that minimize the cost of the metal to make the can.
- 8. 10 pts. Find the most general antiderivative of the function $f(x) = 6\sqrt{x} \sqrt[6]{x}$.
- 9. 10 pts. Find f, given $f''(x) = 20x^3 + 12x^2 + 4$, f(0) = 8, f(1) = 5.
- 10. 15 pts. Show that the equation $1 + 2x + x^3 + 4x^5 = 0$ has exactly one real root.