1. 10 pts. each Use geometry (not Riemann sums) to evaluate the definite integral.
(a) $\int_{-2}^{14}|x-3| d x$
(b) $\int_{0}^{4} f(x) d x$, where $f(x)= \begin{cases}5, & \text { if } x \leq 2 \\ 3 x-1, & \text { if } x>2\end{cases}$
2. 10 pts. each Evaluate each definite integral using the Fundamental Theorem of Calculus.
(a) $\int_{0}^{4} t(t-2)(t-4) d t$
(b) $\int_{1}^{8} 2 \sqrt[3]{x} d x$
(c) $\int_{\pi / 4}^{3 \pi / 4}\left(\cot ^{2} \theta+1\right) d \theta$
3. 10 pts. Find the derivative: $\frac{d}{d x} \int_{\cos x}^{9} \frac{6}{\sqrt{t^{6}+9}} d t$.
4. 10 pts. each Use a change of variables (substitution) to find the following.
(a) $\int_{0}^{2} \frac{2 x}{\left(x^{2}+1\right)^{2}} d x$
(b) $\int \sec ^{2}(10 x+7) d x$
(c) $\int(z+1) \sqrt{3 z+2} d z$
5. 10 pts . Find the area of the region bounded by the curves $y=x / 4$ and $x=y^{3}$.
6. 10 pts. Use the General Slicing Method to find the volume of the solid whose base is the triangle with vertices $(0,0),(3,0)$, and $(0,3)$, and whose cross sections perpendicular to the base and parallel to the y-axis are semicircles.
7. 10 pts. Use the Disc Method or Washer Method (whichever is appropriate) to find the volume of the solid generated by revolving about the x-axis the region bounded by the curves $y=\sqrt{25-x^{2}}$, $y=0, x=2$, and $x=4$.
