1. 10 pts. Find the absolute maximum and minimum values of $f(x)=2 x^{6}-15 x^{4}+24 x^{2}$ on [-2, 2], and state where those values occur.
2. 7 pts. each Let $f(x)=\frac{x^{2}+12}{2 x+1}$.
(a) Find the domain and intercepts of f.
(b) Find the asymptotes of f.
(c) Find the critical points of f.
(d) Find the intervals of increase and decrease, as well as all local extrema.
(e) Find the intervals where f is concave up or down, and identify any inflection points.
3. 10 pts . Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10 .
4. 15 pts . A cylindrical can, open at the top, is to hold $500 \mathrm{~cm}^{3}$ of liquid. Find the height and radius that minimize the amount of material needed to manufacture the can.
5. 10 pts. Find the linear approximation to the function $f(x)=\cos x$ at $\pi / 4$, then use it to estimate the value of $\cos 0.82$. Round to six decimal places.
6. 10 pts. Show that the equation $6 x^{5}+13 x+1=0$ has exactly one real root.
7. 10 pts. each Use L'Hôpital's Rule to evaluate each limit.
(a) $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}}$
(b) $\lim _{x \rightarrow 0^{+}}(\sin x) \sqrt{\frac{1-x}{x}}$
8. 10 pts. each Determine the following indefinite integrals.
(a) $\int\left(\sqrt[4]{x^{3}}+\sqrt{x^{5}}\right) d x$.
(b) $\int \frac{3-\tan \theta}{2 \sec \theta} d \theta$.
