1. 10 pts. each Find the limit or show that it does not exist.
(a) $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-12}{5-4 x-3 x^{3}}$
(b) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+a x}-\sqrt{x^{2}+b x}\right)$
2. Let $f(x)=\frac{x-x^{2}}{2-3 x+x^{2}}$.
(a) 5 pts. Find the domain and intercepts of f.
(b) 5 pts. Find the asymptotes of f.
(c) 5 pts. Find the critical points of f.
(d) 10 pts. Find intervals of increase and decrease, and find all local extrema.
(e) 10 pts . Find intervals of concavity, and identify any inflection points.
3. 10 pts. Find the point on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$.
4. 15 pts . A fence 8 ft tall runs parallel to a tall building at a distance of 4 ft from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building?
5. 10 pts . Find the most general antiderivative of

$$
f(x)=\sqrt[3]{x^{2}}+x \sqrt{x}
$$

6. 10 pts . Find f, given that $f^{\prime \prime}(\theta)=\sin \theta+\cos \theta, f(0)=3$, and $f^{\prime}(0)=4$.
7. 15 pts. Use the definition of the definite integral to evaluate

$$
\int_{-2}^{0}\left(x^{2}+x\right) d x
$$

8. 10 pts. Evaluate the integral by interpreting it in terms of areas:

$$
\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x
$$

9. 10 pts . Use the Fundamental Theorem of Calculus to find the derivative of

$$
y=\int_{\sqrt{x}}^{\pi / 4} \theta \tan \theta d \theta
$$

10. 10 pts. each Use the Fundamental Theorem of Calculus to evaluate the integral.
(a) $\int_{0}^{1}\left(1-8 v^{3}+16 v^{7}\right) d v$
(b) $\int_{\pi / 6}^{\pi / 2} \csc t \cot t d t$
