1. 3 pts. each Use the graph below to find the following limits, if they exist. If a limit does not exist, explain why.
(a) $\lim _{x \rightarrow 1^{-}} h(x)$
(b) $\lim _{x \rightarrow 1^{+}} h(x)$
(c) $\lim _{x \rightarrow 1} h(x)$
(d) $\lim _{x \rightarrow 3^{-}} h(x)$
(e) $\lim _{x \rightarrow-2} h(x)$

2. 10 pts. each Evaluate each limit algebraically using limit laws, showing work.
(a) $\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}$.
(b) $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$.
3. 10 pts Let

$$
G(t)= \begin{cases}4-\frac{1}{2} t, & \text { if } t<2 \\ \sqrt{t+c}, & \text { if } t \geq 2\end{cases}
$$

Find the value of c so that $\lim _{t \rightarrow 2} G(t)$ exists.
4. 10 pts. Use the precise definition of limit to prove that

$$
\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2} .
$$

5. 10 pts . Let g be given by

$$
g(x)= \begin{cases}x^{2}+x, & \text { if } x<1 \\ a, & \text { if } x=1 \\ 3 x+5, & \text { if } x>1\end{cases}
$$

Find the value of a for which g is continuous from the left at 1 , and also the value of a for which g is continuous from the right at 1 .
6. 10 pts. If $f(x)=x^{2}+10 \sin x$, show that there is a number c such that $f(c)=1000$.
7. 10 pts . Find the derivative of $f(x)=2.5 x^{2}+6 x$ using the definition of derivative.
8. 10 pts. If $f(x)=\sqrt[3]{x}$, show that $f^{\prime}(0)$ does not exist.
9. 10 pts. each Use differentiation formulas to find the derivative.
(a) $f(t)=\sqrt{t}-t^{-1}$
(b) $h(x)=\frac{1+3 x}{3-4 x}$
(c) $y=\sec \theta \tan \theta$
10. 10 pts. For what values of x does the graph of $f(x)=x^{3}+3 x^{2}+x+3$ have a horizontal tangent?
11. 10 pts . Find an equation of the tangent line to the curve $y=(1+x) \cos x$ at the point $(0,1)$.
12. 10 pts. Find the limit:

$$
\lim _{t \rightarrow 0} \frac{\tan 6 t}{\sin 2 t}
$$

