
Math 140 Exam #2 Key (Summer II 2012)

1. Using the general result limx→0(sin ax)/x = a, we have

lim
x→0

tan 9x

sinx
= lim

x→0

sin 9x

cos 9x
· 1

sinx
= lim

x→0

(
sin 9x

x
· x

sinx
· 1

cos 9x

)
= lim

x→0

(
sin 9x

x

)
· lim
x→0

(
sinx

x

)−1
· lim
x→0

(
1

cos 9x

)
= (9)(1)−1(1) = 9.

2. Quotient Rule:

f ′(x) =
(2− tanx)(cosx)′ − (cosx)(2− tanx)′

(2− tanx)2

=
(2− tanx)(− sinx)− (cosx)(− sec2 x)

(2− tanx)2
=

tanx sinx− 2 sinx+ secx

(2− tanx)2

3. From y′(x) = 8(cos2 x− sin2 x) we have

y′(π/3) = 8 cos2(π/3)− 8 sin2(π/3) = 8(1/2)2 − 8(
√

3/2)2 = 2− 8(3/4) = −4

as the slope of the tangent line. The equation is thus

y − 8 cos(π/3) sin(π/3) = −4(x− π/3),

or

y = −4x+ 4π/3 + 2
√

3.

4a. f ′(x) = 13(5x3 − x)12(15x2 − 1).

4b. g′(t) = sin(4 cot t) · (4 cot t)′ = sin(4 cot t) · (−4 csc2 t) = −4 csc2 t sin(4 cot t).

4c. h′(x) = 1
2
(x+ x1/2)−1/2 · (x+ x1/2)′ = 1

2
(x+ x1/2)−1/2 · (1 + 1

2
x−1/2), or

h′(x) =
1 + 1

2
x−1/2

2
√
x+
√
x

=
2
√
x+ 1

4
√
x
√
x+
√
x

=
2
√
x+ 1

4
√
x2 + x

√
x
.

5. From [cos(y2) + 2x]′ = (y3)′ we get

− sin(y2) · 2yy′ + 2 = 3y2y′ ⇒ 2yy′ sin(y2) + 3y2y′ = 2 ⇒ y′ =
2

2y sin(y2) + 3y2
.
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6. From (x4)′ = (2x2 + 2y2)′ we get

4x3 = 4x+ 4yy′ ⇒ y′ =
4x3 − 4x

4y
⇒ y′ =

x3 − x
y

.

Slope of tangent line is thus y′ = (23− 2)/2 = 3, so equation is y− 2 = 3(x− 2), or y = 3x− 4.

7. Area of rectangle at time t is A(t) = (2 + t)(4 + t) = t2 + 6t + 8. Rate of change of the
area at time t is A′(t) = 2t+ 6. Thus at time t = 20 seconds the area is increasing at a rate of
A′(20) = 2(20) + 6 = 46 cm2/s.

8. Let x be the distance between the man and the base of the street light, and let ` be the
length of the man’s shadow. The triangles 4ABC and 4OBD in the figure below are similar,
and so we have

`+ x

7
=
`

2
.

Solving this for ` and observing that ` and x are both functions of time t, we obtain

`(t) =
2

5
x(t).

Differentiating both sides with respect to t gives

`′(t) =
2

5
x′(t) =

2

5
· (−1) = −2

5
m/s.

Thus at any time t the length of the shadow is growing shorter at a rate of 2
5

m/s, which
includes the time when the man is 5 meters from the street light!

Regarding the rate at which the tip of the shadow is moving, since point B in the figure—
which is the tip of the shadow—is moving toward A at −2

5
m/s, and A is moving toward O at

−1 m/s, is follows that B is moving toward O at −12
5

m/s.

O

7

D

BA

2

C

x `

9. We have f ′(x) = 3x2−4x−5. Setting f ′(x) = 0 gives the quadratic equation 3x2−4x−5 =
0, which has solutions

x =
2±
√

19

3
≈ 2.12, −0.79.

Neither of these critical points lies in [4, 8], so we need only evaluate f at the endpoints of the
interval: f(4) = 18 is the global minimum and f(8) = 350 the global maximum.
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10a. Dom(f) = (−∞,∞).

10b. Since f(0) = 0, the y-intercept of f , which doubles as an x-intercept, is (0, 0). As for
any x-intercepts besides the origin, we set f(x) = 0 and solve for x:

f(x) = 0 ⇒ x1/3(x+ 3)2/3 = 0 ⇒ x = −3, 0.

Thus f has x-intercepts (0, 0) and (−3, 0).

10c. Since the domain of f is (−∞,∞) there can be no vertical asymptotes. And since
f(x)→∞ as x→∞, and f(x)→ −∞ as x→ −∞, there are no horizontal asymptotes either.

10d. Differentiating f gives

f ′(x) = x1/3 · 2

3
(x+ 3)−1/3 +

1

3
x−2/3 · (x+ 3)2/3 =

2x1/3

3(x+ 3)1/3
+

(x+ 3)2/3

3x2/3

=
2x

3x2/3(x+ 3)1/3
+

x+ 3

3x2/3(x+ 3)1/3
=

3x+ 3

3x2/3(x+ 3)1/3
=

x+ 1

x2/3(x+ 3)1/3

for any x 6= −3, 0. We see that f ′ > 0 if x + 1 > 0 and x + 3 > 0, which implies that x > −1;
also f ′ > 0 if x + 1 < 0 and x + 3 < 0, which implies that x < −3. Thus f is increasing on
(−∞,−3) and (−1,∞) by the Monotonicity Test. Since f ′ < 0 on (−3,−1) we conclude that
f is decreasing on this interval.

Now we find the critical points for f . Setting f ′(x) = 0 gives x = −1, which is one critical
point. As for x values for which f ′(x) does not exist, we have x = −3, 0, which are two more
critical points. Since f ′ > 0 to the left of −3 and f ′ < 0 to the right of −3, by the First
Derivative Test it follows that f has a local maximum at −3, with local maximum value of
f(−3) = 0. Since f ′ < 0 to the left of −1 and f ′ > 0 to the right of −1, f has a local minimum
at −1, with local minimum value of f(−1) = − 3

√
4. Finally, since f ′ > 0 to the left and right

of 0, there is no local extremum for f at 0.

10e. Next, we have

f ′′(x) =
(x3 + 3x2)1/3 − (x+ 1) · 1

3
(x3 + 3x2)−2/3(3x2 + 6x)

(x3 + 3x2)2/3

=
(x3 + 3x2)− (x+ 1)(x2 + 2x)

(x3 + 3x2)4/3
= − 2x

(x3 + 3x2)4/3

for all x 6= −3, 0. Since

(x3 + 3x2)4/3 =
(

3
√
x2(x+ 3)

)4
> 0
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for all x 6= −3, 0, we see that f ′′ > 0 on (−∞,−3) ∪ (−3, 0) and f ′′ < 0 on (0,∞), and so by
the Concavity Test f is concave up on (−∞,−3) ∪ (−3, 0) and concave down on (0,∞). The
point (0, 0) is therefore an inflection point. At the point (−3, 0) concavity does not change so
there is no inflection point there.

10f. The inflection point is marked in red.

x

y

1−1−4

1

11. If x and y are the length and width of the garden, then xy = 30 and so y = 30/x.
Meanwhile the combined area A of the garden and border is (x+ 4)(y + 2), or

A(x) = (x+ 4)

(
30

x
+ 2

)
= 38 + 2x+

120

x
.

The goal is to find x so that A(x) is minimized. We have

A′(x) = 2− 120

x2
,

and so if we set A′(x) = 0 we obtain

2− 120

x2
= 0 ⇒ 2x2 − 120 = 0 ⇒ x2 = 60 ⇒ x =

√
60 = 2

√
15

(obviously we must have x > 0). Thus the length of the garden should be x = 2
√

15 m, and
the width should be y = 30/x = 30/(2

√
15) =

√
15 m, in order to minimize A. That is, the

garden should have dimensions 2
√

15 m×
√

15 m.

12. Let L1 and L2 be the weaker and stronger light sources, respectively, and let I1 and I2
be their intensities. If p is the point on the line segment joining L1 and L2 that is a distance of
x from L1, then I1 and I2 may be characterized as functions of x:

I1(x) =
ks1
x2

and I2(x) =
ks2

(12− x)2
,
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where k > 0 is a constant of proportionality (dependent on what kind of unit is being used to
quantify “intensity”), and s1, s2 > 0 are the “strengths” of L1 and L2. The total light intensity
I at p is thus

I(x) = I1(x) + I2(x) =
ks1
x2

+
2ks1

(12− x)2
, x ∈ (0, 12),

where we use the fact that s2 = 2s1.
We must find the global minimum for I, which is the minimum value I(x) attains for

0 < x < 12. We have

I ′(x) = −2ks1
x3

+
4ks1

(12− x)3
=

2ks1[2x
3 − (12− x)3]

x3(12− x)3
,

and so from I ′(x) = 0 we obtain the equation 2x3 − (12− x)3 = 0, where

2x3 − (12− x)3 = 0 ⇒ 2x3 = (12− x)3 ⇒ x 3
√
x = 12− x ⇒ x =

12

1 + 3
√

2
:= x∗,

which is approximately 5.31 and so is a critical point for I that lies in (0, 12). There is no
x ∈ (0, 12) for which I ′(x) does not exist, so there are no other critical points in (0, 12). Since
I is continuous on (0, 12) and

I ′(4) = − 3

128
ks1 < 0 and I ′(8) =

15

256
ks1 > 0,

we conclude by the Intermediate Value Theorem that I ′ < 0 on (0, x∗), and I ′ > 0 on (x∗, 12).
By the First Derivative Test I has a local minimum at x∗, and since I is decreasing on (0, x∗) and
increasing on (x∗, 12), we conclude that the local minimum at x∗ is in fact a global minimum.

Therefore the intensity of light between L1 and L2 is weakest a distance of

12

1 + 3
√

2
≈ 5.31 m

from the weaker light source L1.


