MATH 140 EXAM #3 KEY (SUMMER II - 2010)

- 1. The linearization of f at 0 is simply the tangent line to the curve given by $f(x)=1/\sqrt{2+x}$ at the point $(0,f(0))=(0,1/\sqrt{2})$. The slope of the line is figured from $f'(x)=-\frac{1}{2}(2+x)^{-3/2}$ as $f'(0)=-\frac{1}{2}\cdot 2^{-3/2}=-2^{-5/2}$. The point-slope formula gives an equation for the tangent line, $y-2^{-1/2}=-2^{-5/2}(x-0)$, which simplifies as $y=-\frac{1}{4\sqrt{2}}x+\frac{1}{\sqrt{2}}$. Thus $L(x)=-\frac{1}{4\sqrt{2}}x+\frac{1}{\sqrt{2}}$, or approximately L(x)=-0.1768x+0.7071.
- 2. We have the function $f(x) = \sin x$. The tangent line to the curve given by $f(x) = \sin x$ at the point (0, f(0)) = (0, 0) will provide a reasonable linearization of the sine function for the purpose of estimating $\sin 1^{\circ}$. The slope of the tangent line is $f'(0) = \cos(0) = 1$, which gives us an equation for the tangent line: y = x. That is, L(x) = x is our linearization, and close to 0 we can expect the value of L(x) to be fairly close to $\sin x$. The trick, however, is that we must work in radians: $\sin 1^{\circ} = \sin(\pi/180) \approx L(\pi/180) = \pi/180$. This is a decent approximation, since $\pi/180 = 0.0174524064...$
- **3a.** $s'(t) = 12t^3 + 12t^2 12t = 12t(t^2 + t 1)$, so s'(t) = 0 implies that t = 0, $\frac{-1 \pm \sqrt{5}}{2}$ are the critical numbers.
- **3b.** $f'(x) = \frac{4}{5}x^{-1/5}(x-4)^2 + x^{4/5} \cdot 2(x-4) = 2(x-4)\left[x^{4/5} + \frac{2}{5}x^{-1/5}(x-4)\right] = \frac{2}{5}(x-4)(7x-8)x^{-1/5}$, so the critical numbers are $x = 0, 4, \frac{8}{7}$.
- **4a.** $f'(x) = 4x^3 4x = 4x(x^2 1) = 4x(x 1)(x + 1)$, so the critical numbers are 0, 1, -1. We evaluate: f(-2) = 11, f(-1) = 2, f(0) = 3, f(1) = 2, f(3) = 66. Absolute maximum is f(3) = 66, and absolute minimum is f(-1) = f(1) = 2.
- **4b.** $f'(x) = \cos x \sin x$. Now, $f'(x) = 0 \Rightarrow \cos x = \sin x \Rightarrow \tan x = 1 \Rightarrow x = \frac{\pi}{4}$, which is the only solution that fits in the interval $\left[0, \frac{\pi}{3}\right]$. Now, f(0) = 1, $f\left(\frac{\pi}{4}\right) = \frac{2}{\sqrt{2}} = \sqrt{2}$, $f\left(\frac{\pi}{3}\right) = \sin\frac{\pi}{3} + \cos\frac{\pi}{3} = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2}$. Absolute maximum: $f\left(\frac{\pi}{4}\right) = \sqrt{2}$, absolute minimum: f(0) = 1.
- 5. f is continuous on $(-\infty, -2) \cup (-2, \infty)$, which contains the closed interval [1, 4]. Also f is differentiable on $(-\infty, -2) \cup (-2, \infty)$, which contains the open interval (1, 4). By the Mean Value Theorem there exists some $c \in (1, 4)$ such that $f'(c) = \frac{f(4) f(1)}{4 1} = \frac{1}{3} \left(\frac{2}{3} \frac{1}{3}\right) = \frac{1}{9}$. Now, $f'(x) = \frac{2}{(x + 2)^2}$, so $f'(c) = \frac{1}{9}$ implies that $\frac{2}{(c + 2)^2} = \frac{1}{9}$, or $c = -2 \pm 3\sqrt{2}$. Now, notice that $-2 + 3\sqrt{2}$ lies in (1, 4).
- **6a.** $h'(x) = 15x^2(x^2-1)$, which should make clear that h'(x) > 0 on $(-\infty, -1) \cup (1, \infty)$ and h'(x) < 0 on $(-1, 0) \cup (0, 1)$; thus, h(x) is increasing on $(-\infty, -1) \cup (1, \infty)$ and decreasing on $(-1, 0) \cup (0, 1)$.
- **6b.** Local maximum is h(-1) = 5, and local minimum is h(1) = 1.
- **6c.** $h''(x) = 60x^3 30x = 30x(\sqrt{2}x 1)(\sqrt{2}x + 1)$, so h''(x) > 0 on $\left(-\frac{1}{\sqrt{2}}, 0\right) \cup \left(\frac{1}{\sqrt{2}}, \infty\right)$ and h''(x) < 0 on $\left(-\infty, -\frac{1}{\sqrt{2}}\right) \cup \left(0, \frac{1}{\sqrt{2}}\right)$. Therefore h(x) is concave up on $\left(-\frac{1}{\sqrt{2}}, 0\right) \cup \left(\frac{1}{\sqrt{2}}, \infty\right)$ and concave down on $\left(-\infty, -\frac{1}{\sqrt{2}}\right) \cup \left(0, \frac{1}{\sqrt{2}}\right)$. Inflection points are at $x = -\frac{1}{\sqrt{2}}$, $0, \frac{1}{\sqrt{2}}$.

7a. =
$$\lim_{y \to \infty} \frac{-3y^2 + 2}{5y^2 + 4y} = -\frac{3}{5}$$
.

7b.
$$= \lim_{x \to -\infty} \frac{\sqrt{x^6(9 - x^{-5})}}{x^3 + 1} = \lim_{x \to -\infty} \frac{|x|^3 \sqrt{9 - 1/x^5}}{x^3 + 1} = \lim_{x \to -\infty} \frac{-x^3 \sqrt{9 - 1/x^5}}{x^3 + 1} = \lim_{x \to -\infty} \frac{-\sqrt{9 - 1/x^5}}{1 + 1/x^3} = \frac{-\sqrt{9}}{1} = -3.$$

$$7c. = \lim_{x \to \infty} \left(\frac{\sqrt{x^4 + 6x^2} - x^2}{1} \cdot \frac{\sqrt{x^4 + 6x^2} + x^2}{\sqrt{x^4 + 6x^2} + x^2} \right) = \lim_{x \to \infty} \frac{6x^2}{\sqrt{x^4 + 6x^2} + x^2} = \lim_{x \to \infty} \frac{6x^2}{x^2 \sqrt{1 + 6/x^2} + x^2}$$
$$= \lim_{x \to \infty} \frac{6}{\sqrt{1 + 6/x^2} + 1} = \frac{6}{\sqrt{1 + 0} + 1} = 3.$$

- **8.** A point on the line has coordinates (x, 2x 9). The distance between (x, 2x 9) and (5, -2) is given by $D(x) = \sqrt{(x 5)^2 + ((2x 9) (-2))^2} = \sqrt{5x^2 38x + 74}$. Now, $D'(x) = \frac{1}{2}(5x^2 38x + 74)^{-1/2} \cdot (10x 38)$, and it's seen that D'(x) = 0 only when $x = \frac{38}{10}$. That is, the point $(\frac{19}{5}, 2(\frac{19}{5}) 9) = (\frac{19}{5}, -\frac{7}{5})$ is the closest to (5, -2).
- 9. $V=\pi r^2 h$, where V is regarded as a constant. We write $h=\frac{V}{\pi r^2}$ and thereby eliminate the variable h. The surface area S of the can is given by $S=\pi r^2+2\pi r h$, which then gives the function $S(r)=\pi r^2+\frac{2V}{r}$. We want to find the minimum value for this function, so we obtain its derivative: $\frac{dS}{dr}=2\pi r-\frac{2V}{r^2}$. The derivative does not exist when r=0, but we can't have a can with zero radius so forget this critical number. Setting $\frac{dS}{dr}=0$ and solving yields: $2\pi r-\frac{2V}{r^2}=0$, or $r=\sqrt[3]{\frac{V}{\pi}}$. This is what we want. Dimensions of the can: radius of $\sqrt[3]{\frac{V}{\pi}}$, height of $\sqrt[3]{\frac{V}{\pi}}$ (put $r=\sqrt[3]{\frac{V}{\pi}}$ into $h=\frac{V}{\pi r^2}$).

10.
$$\int \left(6x^{1/2} - x^{1/6}\right) dx = 6 \cdot \frac{2}{3}x^{3/2} - \frac{6}{7}x^{7/6} + C = 4x^{3/2} - \frac{6}{7}x^{7/6} + C.$$

- 11. $f'(x) = \int f''(x)dx = 5x^4 + 4x^3 + 4x + C \Rightarrow f(x) = \int f'(x)dx = x^5 + x^4 + 2x^2 + Cx + D$. Now, f(0) = 8 implies that D = 8, giving us $f(x) = x^5 + x^4 + 2x^2 + Cx + 8$. Next, f(1) = 5 gives 1 + 1 + 2 + C + 8 = 5, or C = -7. Therefore $f(x) = x^5 + x^4 + 2x^2 7x + 8$.
- 12. Let $f(x) = 4x^5 + x^3 + 2x + 1$, which is a function that is continuous and differentiable on $(-\infty, \infty)$. Now, f(-1) = -6 < 0 and f(0) = 1 > 0, so by the Intermediate Value Theorem there exists some $c \in (-1,0)$ such that f(c) = 0 (i.e. $4c^5 + c^3 + 2c + 1 = 0$). This demonstrates that the equation has at least one real root.

Now, suppose f has two real roots c_1 and c_2 . Then $f(c_1)=0$ and $f(c_2)=0$. By the Mean Value Theorem (or just apply its corollary, Rolle's Theorem) there exists some number b between c_1 and c_2 such that f'(b)=0. Thus $20b^4+3b^2+2=0$. But we can see that we must have $f'(x)\geq 2$ for all $x\in (-\infty,\infty)$ since $20x^4\geq 0$ and $3x^2\geq 0$ always hold for $f'(x)=20x^4+3x^2+2$. So f'(b)=0 for some real number b is a contradiction. Hence f cannot have two real roots.

Therefore f must have exactly one real root.