MATH 140 EXAM #3 KEY (SUMMER II - 2010)

1. The linearization of f at 0 is simply the tangent line to the curve given by f(z) = 1/v/2+ z at the point
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(0, £(0)) = (0,1/4/2). The slope of the line is figured from f’(z) = —5(2 +2)7%/% as f(0) = —3 973/2 = _975/2,

The point-slope formula gives an equation for the tangent line, y — 271/2 = —275/ 2(z — 0), which simplifies as
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=———x+ —. Thus L(z) = ———=x + —, or approximately L(x) = —0.1768z + 0.7071.
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2. We have the function f(x) = sinz. The tangent line to the curve given by f(x) = sinz at the point (0, f(0)) = (0,0)
will provide a reasonable linearization of the sine function for the purpose of estimating sin 1°. The slope of the tangent
line is f/(0) = cos(0) = 1, which gives us an equation for the tangent line: y = . That is, L(x) = « is our linearization,
and close to 0 we can expect the value of L(x) to be fairly close to sinz. The trick, however, is that we must work
in radians: sin1° = sin(7/180) ~ L(7w/180) = 7/180. This is a decent approximation, since 7/180 = 0.0174532925...
while sin 1° = 0.0174524064...

3a. §'(t) = 12t3 + 12t — 12t = 12¢(t* + ¢ — 1), so §'(t) = 0 implies that t = 0, are the critical numbers.
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3b. f'(z) = %z*1/5(z —4)2 4 25 . 2(x — 4) = 2(x — 4) |2*/° + %zfl/f’(z —4)| = %(x — 4)(7x — 8)x~ /5, so the

critical numbers are x = 0, 4, %.

da. f'(z) = 42® — 4z = 4a(2® — 1) = 4dz(z — 1)(z + 1), so the critical numbers are 0, 1, —1. We evaluate:
f(=2) =11, f(-1) =2, f(0) =3, f(1) =2, f(3) = 66. Absolute maximum is f(3) = 66, and absolute minimum is
fE) =) =2

4b. f'(x) = cosxz —sinz. Now, f'(z) =0 = cosz =sinz = tanz =1 = z = %, which is the only solution that
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fits in the interval [0, g} Now, f(0) =1, f(Z) =5 V2, f(g) —smg—l—cosg = 7—}—5 =

maximum: f (%) = /2, absolute minimum: f(0) = 1.

. Absolute

5. f is continuous on (—oo,—2) U (—2,00), which contains the closed interval [1,4]. Also f is differentiable on

(=00, —2) U (—2,00), which contains the open interval (1,4). By the Mean Value Theorem there exists some ¢ € (1,4)

such that f/(c) = w = % (; - ;) = é Now, f/'(x) = ﬁ, so f'(c) = % implies that (052)2 = %, or

¢ = —2 =+ 3v/2. Now, notice that —2 + 3v/2 lies in (1,4).

6a. h'(z) = 152%(22—1), which should make clear that A’(z) > 0 on (—oo, —1)U(1,00) and A/(z) < 0 on (—1,0)U(0, 1);
thus, h(z) is increasing on (—oo, —1) U (1, 00) and decreasing on (—1,0) U (0, 1).

6b. Local maximum is h(—1) = 5, and local minimum is h(1) = 1.
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6c. h’(z) = 602 — 30z = 302(v2x — 1)(v2x + 1), so h’(z) > 0 on (—70) U (7oo> and h'(x) <
V2 V2
1 1 1 1
0on (—oc0,———= ) U|[0,— |]. Therefore h(x) is concave up on { ———,0] U | —, o0 | and concave down on
(-=-7)v (035) ) pon (- 750) v (75)
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—00,———= | U | 0, —= ]. Inflection points are at +t = ——, 0, —.
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8. A point on the line has coordinates (z,2x —9). The distance between (z,2z — 9) and (5, —2) is given by
D(z) = /(z —5)2+ ((2z — 9) — (—2))? = Vb2? — 38z + 74. Now, D'(z) = 3(52% — 38z + 74)~1/2 . (10x — 38), and

it’s seen that D’(x) = 0 only when 2 = 3%, That is, the point (¥£,2(%) —9) = (£, -1) is the closest to (5,—-2).

v
9. V = 7r2h, where V is regarded as a constant. We write h = — and thereby eliminate the variable h. The
r
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surface area S of the can is given by S = 7r? + 27rh, which then gives the function S(r) = mr? + =—. We want
r
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to find the minimum value for this function, so we obtain its derivative: e 2mr — —-. The derivative does not
r r

ds
exist when r = 0, but we can’t have a can with zero radius so forget this critical number. Setting e 0 and solving

-
2V 4V 4V 4V

yields: 2rr — = = 0, or r = {/ —. This is what we want. Dimensions of the can: radius of {/ —, height of {/ —
T 7r
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10. /(6301/2—x1/6>dx=6-§x3/2—2x7/6+024x3/2—gx7/6+0.

11. f'(z) = /f”(x)dx =5t 44 4+ C = f(z) = /f’(:z:)d:c = 2° + 2* + 222 + Cz + D. Now, f(0) = 8

implies that D = 8, giving us f(z) = 2° + 2* + 222 + Cz + 8. Next, f(1) =5gives 1 +1+2+C+8 =5, 0r C = —T.
Therefore f(z) = 2° + 2* + 222 — T + 8.

12. Let f(z) = 42° + 2% + 22 + 1, which is a function that is continuous and differentiable on (—o0,00). Now,
f(=1) = -6 < 0 and f(0) =1 > 0, so by the Intermediate Value Theorem there exists some ¢ € (—1,0) such that
f(e) =0 (ie. 4c® + 2 +2c+1 = 0). This demonstrates that the equation has at least one real root.

Now, suppose f has two real roots ¢; and cp. Then f(c1) = 0 and f(c2) = 0. By the Mean Value Theorem (or
just apply its corollary, Rolle’s Theorem) there exists some number b between ¢; and ¢y such that f/(b) = 0. Thus
206% + 3b? + 2 = 0. But we can see that we must have f’(z) > 2 for all x € (—00,00) since 20z > 0 and 322 > 0
always hold for f/(x) = 20x* + 322 4 2. So f’(b) = 0 for some real number b is a contradiction. Hence f cannot have
two real roots.

Therefore f must have ezactly one real root. B



