1 Set $f^{\prime}(x)=12 x^{2}-42 x+36=0$ to get $x=\frac{3}{2}, 2$. These are the critical points. Evaluate: $f(1)=19, f(3)=27, f(3 / 2)=20.25, f(2)=20$. Absolute maximum is $f(3)=27$, absolute minimum is $f(1)=19$.
$2 f$ is continuous and differentiable on $(-\infty,-2) \cup(-2, \infty)$, so is continuous on $[-1,2]$ and differentiable on $(-1,2)$. Mean Value Theorem applies: there exists some $c \in(-1,2)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}=\frac{1}{2} .
$$

We have $f^{\prime}(x)=2 /(x+2)^{2}$, so $f^{\prime}(c)=1 / 2$ implies $2 /(c+2)^{2}=1 / 2$. Solve to get $c=0,-4$. Since $0 \in(-1,2)$ the theorem is confirmed.

3 First we have

$$
f^{\prime}(x)=2 x \sqrt{9-x^{2}}-\frac{x^{3}}{\sqrt{9-x^{2}}},
$$

so since

$$
f^{\prime}(x)>0 \Rightarrow 2 x \sqrt{9-x^{2}}-\frac{x^{3}}{\sqrt{9-x^{2}}}>0 \Rightarrow 2 x\left(9-x^{2}\right)>x^{3}
$$

(multiply by $\sqrt{9-x^{2}}$), it follows that $f^{\prime}(x)>0$ if and only if

$$
3 x(\sqrt{6}-x)(\sqrt{6}+x)>0 .
$$

This has solution set $(-3,-\sqrt{6}) \cup(0, \sqrt{6})$, while $f^{\prime}(x)<0$ has solution set $(-\sqrt{6}, 0) \cup(\sqrt{6}, 3)$. Therefore f is increasing on $(-3,-\sqrt{6})$ and $(0, \sqrt{6})$, and decreasing on $(-\sqrt{6}, 0)$ and $(\sqrt{6}, 3)$.

4a Domain is \mathbb{R}, while the only intercept is $(0,0)$.

4b There's only the horizontal asymptote $y=0$.

4c Here

$$
f^{\prime}(x)=\frac{12\left(2-x^{2}\right)}{\left(x^{2}+2\right)^{2}}
$$

so $f^{\prime}(x)=0$ if and only if $x= \pm \sqrt{2}$. These are the critical points.

4d $f^{\prime}(x)<0$ iff $2-x^{2}=0$ iff $x \in(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$, while $f^{\prime}(x)>0$ iff $x \in(-\sqrt{2}, \sqrt{2})$. Hence f is decreasing on $(-\infty,-\sqrt{2}),(\sqrt{2}, \infty)$, and increasing on $(-\sqrt{2}, \sqrt{2})$. By the First Derivative Test $f(-\sqrt{2})=-3 \sqrt{2}$ is a local minimum and $f(\sqrt{2})=3 \sqrt{2}$ is a local maximum.

4e Differentiating $f^{\prime}(x)$ gives

$$
f^{\prime \prime}(x)=\frac{24 x\left(x^{2}-6\right)}{\left(x^{2}+2\right)^{3}}
$$

So $f^{\prime \prime}(x)>0$ iff $24 x\left(x^{2}-6\right)>0$ iff $x \in(-\sqrt{6}, 0) \cup(\sqrt{6}, \infty)$. We conclude that f is concave up on $(-\sqrt{6}, 0),(\sqrt{6}, \infty)$, and concave down on $(-\infty,-\sqrt{6}),(0, \sqrt{6})$. Inflection points are $(-\sqrt{6}, f(-\sqrt{6})),(0, f(0)),(\sqrt{6}, f(\sqrt{6}))$.

5 Let x be the length of one leg of the right triangle, so that $1000-x$ is the length of the other side. Area of triangle is $A(x)=\frac{1}{2} x(1000-x)$. Setting $A^{\prime}(x)=500-x=0$ gives $x=500$. Area of triangle is maximized when the lengths of the two legs is 500 .

6 Suppose d is the distance traveled by the driver. This is a constant here, whereas the velocity v is the variable. Cost C as a function of v is

$$
C(v)=\frac{15 d}{v}+\frac{2.50 d}{10-0.07 v}
$$

Then

$$
C^{\prime}(v)=-\frac{15 d}{v^{2}}-\frac{2.50 d}{(10-0.07 v)^{2}}(-0.07)
$$

and setting $C^{\prime}(v)=0$ gives

$$
\frac{0.175}{(10-0.07 v)^{2}}=\frac{15}{v^{2}},
$$

which has solutions

$$
v=\frac{-21 \pm \sqrt{1050}}{0.2030}
$$

The choice of "-" gives a negative velocity, which we must discount. The "+" option gives $v \approx 56$ miles per hour, which is the velocity that minimizes cost.

Note that $C^{\prime}(v)$ is undefined at $v=0$ and $v \approx 142.9$, but since neither of these values is in the domain of $C(v)$ they are not critical points. (And anyway it's not reasonable for the driver to go 0 mph or 143 mph .)

7 Set $f(x)=\sqrt[4]{x}$, so $f^{\prime}(x)=\frac{1}{4} x^{-3 / 4}$, and hence $f^{\prime}(81)=\frac{1}{108}$. Thus the tangent line to $f(x)=\sqrt[4]{x}$ at $(81, f(81))=(81,3)$ has slope $\frac{1}{108}$, resulting in the equation $y=\frac{1}{108} x+\frac{9}{4}$. Now,

$$
\sqrt[4]{85}=f(85) \approx \frac{1}{108}(85)+\frac{9}{4}=3 . \overline{037} .
$$

8a The limit could be figured by factoring out \sqrt{x} from the numerator and denominator and reducing. But with L'Hôpital's Rule we have

$$
\lim _{x \rightarrow 0^{+}} \frac{x-3 \sqrt{x}}{x-\sqrt{x}} \stackrel{\text { LR }}{=} \lim _{x \rightarrow 0^{+}} \frac{1-\frac{3}{2 \sqrt{x}}}{1-\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow 0^{+}} \frac{2 \sqrt{x}-3}{2 \sqrt{x}-1}=\frac{2 \sqrt{0}-3}{2 \sqrt{0}-1}=3 .
$$

8b From the identity $\sin (2 u)=2 \sin u \cos u$ we get $\csc x=\frac{1}{2} \csc (x / 2) \sec (x / 2)$, which will help make things a bit easier:

$$
\begin{aligned}
\lim _{x \rightarrow \pi^{-}} \frac{\csc x+x}{\tan (x / 2)} & =\lim _{x \rightarrow \pi^{-}} \frac{\frac{1}{2} \csc (x / 2) \sec (x / 2)+x}{\tan (x / 2)} \cdot \frac{\cos (x / 2)}{\cos (x / 2)} \\
& =\lim _{x \rightarrow \pi^{-}} \frac{\frac{1}{2} \csc (x / 2)+x \cos (x / 2)}{\sin (x / 2)} \\
& =\frac{\frac{1}{2} \csc (\pi / 2)+x \cos (\pi / 2)}{\sin (\pi / 2)}=\frac{1}{2}
\end{aligned}
$$

L'Hôpital's Rule makes things worse for this problem.

8c This one is like one I did in the lecture: L'Hôpital's Rule leads to nothing but messes, so we don't use it here. Multiply numerator and denominator by $\sqrt{x^{2}+x}+x$ to get

$$
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+1 / x}+1}=\frac{1}{2}
$$

9a $\frac{1}{3} y^{3}+4 y^{-1 / 2}-2 y^{-1}+C$.

9b $8 \sin \theta-\cos \theta+C$.

10 We have $h(t)=4 \sin t+4 \cos t+C$, so

$$
0=h(\pi / 2)=4 \sin \frac{\pi}{2}+4 \cos \frac{\pi}{2}+C=4+C
$$

implying $C=-4$, and therefore

$$
h(t)=4 \sin t+4 \cos t-4 .
$$

