1a $\quad r^{\prime}(t)=t^{-2 / 3}-6 t^{7}-1$

1b Quotient Rule:

$$
G^{\prime}(\ell)=\frac{(\sqrt{\ell}+2)(2)-(2 \ell-1)\left(\frac{1}{2} \ell^{-1 / 2}\right)}{(\sqrt{\ell}+2)^{2}}=\frac{2 \ell+8 \sqrt{\ell}+1}{2 \sqrt{\ell}(\sqrt{\ell}+2)^{2}}
$$

1c Product Rule: $\sin x \cos x+x \cos ^{2} x-x \sin ^{2} x$

1d Quotient Rule:

$$
y^{\prime}=\frac{(1+\csc x)\left(-\csc ^{2} x\right)-(\cot x)(-\csc x \cot x)}{(1+\csc x)^{2}}=\frac{\csc x \cot ^{2} x-\csc ^{2} x-\csc ^{3} x}{(1+\csc x)^{2}}
$$

2 We need $f^{\prime}(2)=4$ and we have $f^{\prime}(x)=2 x+A$, so let $A=0$. Now, $f(x)=x^{2}+B$ must have tangent line $y=4 x+2$ at the point $(2, f(2))=(2, B+4)$, and we find its tangent line to in fact be $y=4 x+B-4$. Thus $B-4=2$ is required, or $B=6$. The desired function f is therefore given by $f(x)=x^{2}+6$.

3a $\quad y^{\prime}=8\left(2 x^{6}+x\right)^{7}\left(12 x^{5}+1\right)$.
3b $y^{\prime}=\sec ^{2}(\sqrt{x}) \cdot(\sqrt{x})^{\prime}=\frac{\sec ^{2} \sqrt{x}}{2 \sqrt{x}}$.

3c $h^{\prime}(x)=-20 \sec ^{4}(\cos 5 x) \tan (\cos 5 x) \sin 5 x$.

4 Differentiating both sides of the equation with respect to x gives

$$
3(x y+1)^{2}\left(x y^{\prime}+y\right)=1-2 y y^{\prime}
$$

Now just solve for y^{\prime} :

$$
y^{\prime}=\frac{1-3 y(x y+1)^{2}}{3 x(x y+1)^{2}+2 y}
$$

5 Differentiating both sides of the equation with respect to x :

$$
-\left(1-y^{\prime}\right) \sin (x-y)+y^{\prime} \cos y=0
$$

Solve for y^{\prime} :

$$
y^{\prime}=\frac{\sin (x-y)}{\sin (x-y)+\cos y}
$$

At the point $(x, y)=(\pi / 2, \pi / 4)$ we then find that

$$
y^{\prime}=\frac{\sin \pi / 4}{\sin \pi / 4+\cos \pi / 4}=\frac{1}{2} .
$$

This is the slope of the tangent line at $(\pi / 2, \pi / 4)$, and so the equation is $y=\frac{1}{2} x$.

6 With b and h the base and height of the triangle, respectively, the area is $A=\frac{1}{2} b h$. Differentiating with respect to time t yields

$$
\begin{equation*}
\frac{d A}{d t}=\frac{1}{2}\left(b \frac{d h}{d t}+h \frac{d b}{d t}\right) . \tag{1}
\end{equation*}
$$

When area is $A=150 \mathrm{~cm}^{2}$ and height is $h=12 \mathrm{~cm}$ we find the base to be $b=2 A / h=25 \mathrm{~cm}$. Putting all known quantities into (1) gives

$$
3=\frac{1}{2}\left(25(-2)+12 \frac{d b}{d t}\right)
$$

or $d b / d t=4 \frac{2}{3} \mathrm{~cm} / \mathrm{min}$.

7 Let h be the water depth, so the water occupies a space that is an inverted cone with radius $r=h / 2$ (using similar triangles). With the formula $V=\frac{\pi}{3} r^{2} h$ we find the water volume to be $V=\frac{\pi}{12} h^{3}$. Now implicit differentiation gives

$$
\frac{d V}{d t}=\frac{\pi}{4} h^{2} \frac{d h}{d t}
$$

and hence

$$
\frac{d h}{d t}=\frac{4}{\pi h^{2}} \frac{d V}{d t}
$$

We're given that $d V / d t=-2 \mathrm{ft}^{3} / \mathrm{s}$, so when $h=3 \mathrm{ft}$ we have

$$
\left.\frac{d h}{d t}\right|_{h=3}=\frac{4}{\pi \cdot 3^{2}}(-2)=-\frac{8}{9 \pi} \mathrm{ft} / \mathrm{s} .
$$

