Math 140 Exam \#1 Key (Summer 2020)

1 We have

$$
\lim _{x \rightarrow-1} F(x)=3, \quad \lim _{x \rightarrow-2} F(x)=1, \quad \lim _{x \rightarrow 1^{-}} F(x)=2, \quad \lim _{x \rightarrow 1^{+}} F(x)=4, \quad \lim _{x \rightarrow 3^{+}} F(x)=\text { DNE. }
$$

2a Simply reduce the fraction first:

$$
\lim _{x \rightarrow-b} \frac{(x+b)^{6}+(x+b)^{9}}{4}=0
$$

2b Multiply top and bottom of fraction by $5(5+h)$:

$$
\lim _{h \rightarrow 0} \frac{5-(5+h)}{5 h(5+h}=\lim _{h \rightarrow 0} \frac{-1}{5(5+h)}=-\frac{1}{25} .
$$

2c Factor the bottom (or multiply top and bottom by $\sqrt{x}+8$):

$$
\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{(\sqrt{x}-8)(\sqrt{x}+8)}=\lim _{x \rightarrow 64} \frac{1}{\sqrt{x}+8}=\frac{1}{\sqrt{64}+8}=\frac{1}{16}
$$

2d Factor the bottom:

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{(\cos x-2)(\cos x-1)}=\lim _{x \rightarrow 0} \frac{-1}{\cos x-2}=\frac{-1}{\cos 0-2}=1 .
$$

3 Since

$$
\lim _{x \rightarrow-3^{-}} G(x)=\lim _{x \rightarrow-3^{-}}(3 x-4 k)=-9-4 k \quad \text { and } \quad \lim _{x \rightarrow-3^{+}} G(x)=\lim _{x \rightarrow-3^{+}}(x+9)=6
$$

the limit $\lim _{x \rightarrow-3} G(x)$ can only exist if $-9-4 k=6$, which only happens if $k=-\frac{15}{4}$. Then $\lim _{x \rightarrow-3} G(x)=6$.

4 All equal $-\infty$.

5 For $x \neq \frac{1}{2}$,

$$
f(x)=\frac{1}{x(x+3)}
$$

and so f has vertical asymptotes $x=0$ and $x=-3$. We find that

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f(x)=+\infty, \quad \lim _{x \rightarrow-3^{-}} f(x)=+\infty, \quad \lim _{x \rightarrow-3^{+}} f(x)=-\infty,
$$

so $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow-3} f(x)$ do not exist.

6 Divide top and bottom by x^{2}, then evaluate to get $-\frac{4}{7}$.

7 In general,

$$
f(x)=\frac{4 x^{3}+1}{2 x^{3}+\sqrt{16 x^{6}+1}}=\frac{4 x^{3}+1}{2 x^{3}+|x|^{3} \sqrt{16+x^{-6}}}
$$

so

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{4 x^{3}+1}{2 x^{3}+x^{3} \sqrt{16+x^{-6}}}=\lim _{x \rightarrow \infty} \frac{4+x^{-3}}{2+\sqrt{16+x^{-6}}}=\frac{4}{2+\sqrt{16}}=\frac{2}{3},
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{4 x^{3}+1}{2 x^{3}-x^{3} \sqrt{16+x^{-6}}}=\lim _{x \rightarrow-\infty} \frac{4+x^{-3}}{2-\sqrt{16+x^{-6}}}=\frac{4}{2-\sqrt{16}}=-2 .
$$

Horizontal asymptotes are $y=\frac{2}{3}$ and $y=-2$.

8 Continuity from the left at -1 requires that $\lim _{x \rightarrow-1^{-}} h(x)=h(-1)$. Since

$$
\lim _{x \rightarrow-1^{-}} h(x)=\lim _{x \rightarrow-1^{-}}\left(2 x^{2}-x\right)=3,
$$

and $h(-1)=s$, we set $s=3$ to get continuity from the left at -1 .
Continuity from the right at -1 requires $\lim _{x \rightarrow-1^{+}} h(x)=h(-1)$. Since

$$
\lim _{x \rightarrow-1^{+}} h(x)=\lim _{x \rightarrow-1^{+}}(3 x-5)=-8
$$

and $h(-1)=s$, we set $s=-8$ to get continuity from the right at -1 .

9 Let $\epsilon>0$. Choose $\delta=\epsilon / 4$. Suppose x is such that $0<|x+2|<\delta$. Then $|x+2|<\epsilon / 4$, and since

$$
|x+2|<\frac{\epsilon}{4} \Rightarrow|4 x+8|<\epsilon \Rightarrow|(4 x+9)-1|<\epsilon
$$

we conclude that $4 x+9 \rightarrow 1$ as $x \rightarrow-2$.

10a By definition,
$f^{\prime}(1)=\lim _{t \rightarrow 1} \frac{f(t)-f(1)}{t-1}=\lim _{t \rightarrow 1} \frac{\sqrt{2 t-1}-1}{t-1}=\lim _{t \rightarrow 1} \frac{2 t-2}{(t-1)(\sqrt{2 t-1}+1)}=\lim _{t \rightarrow 1} \frac{2}{\sqrt{2 t-1}+1}=1$.

10b Slope of the tangent line at $(1,1)$ is $f^{\prime}(1)=1$, so line is $y=x$.

11 We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}=\lim _{t \rightarrow x} \frac{\frac{1}{3 t-4}-\frac{1}{3 x-4}}{t-x}=\lim _{t \rightarrow x} \frac{-3(t-x)}{(t-x)(3 t-4)(3 x-4)} \\
& =\lim _{t \rightarrow x} \frac{-3}{(3 t-4)(3 x-4)}=-\frac{3}{(3 x-4)^{2}} .
\end{aligned}
$$

