Math 140 Exam \#2 Key (Summer 2019)

1a Since $\sqrt{t}=t^{1 / 2}, s^{\prime}(t)=2 t^{-1 / 2}-t^{3}+1$.

1b Quotient Rule:

$$
f^{\prime}(x)=\frac{\left(x^{2}-1\right)\left(4 x^{3}\right)-\left(x^{4}+1\right)(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{4 x^{5}-4 x^{3}-2 x^{5}-2 x}{\left(x^{2}-1\right)^{2}}=\frac{2 x^{5}-4 x^{3}-2 x}{\left(x^{2}-1\right)^{2}} .
$$

1c Product Rule: $y^{\prime}=\sin x \sec ^{2} x+\cos x \tan x=\tan x \sec x+\sin x$.

1d Quotient Rule:

$$
y^{\prime}=\frac{(1+\sin x)(-2 \sin x)-(2 \cos x)(\cos x)}{(1+\sin x)^{2}}=-\frac{2+2 \sin x}{(1+\sin x)^{2}}=-\frac{2}{1+\sin x}
$$

2 First we get $f^{\prime}(x)=6 x^{2}-6 x-12$. Setting $f^{\prime}(x)=60$ gives $6 x^{2}-6 x-12=60$, or $x^{2}-x-12=0$, which factors as $(x-4)(x+3)=0$. Solutions are $x=-3,4$. Points on the graph of f with slope 60 are therefore $(-3,-41)$ and $(4,36)$.

3a $\quad y^{\prime}=16\left(4-15 x^{4}\right)\left(4 x-3 x^{5}\right)^{15}$.
3b $y^{\prime}=\sec ^{2}(\sqrt{x}) \cdot(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}} \sec ^{2} \sqrt{x}$.

3c $h^{\prime}(x)=4 \sin ^{3}(\cos 7 x) \cdot \cos (\cos 7 x) \cdot(-\sin 7 x) \cdot 7=-28 \cos (\cos 7 x) \sin ^{3}(\cos 7 x) \sin 7 x$.

4 By the Quotient Rule:

$$
3 x^{2}=\frac{(x-y)\left(1+y^{\prime}\right)-(x+y)\left(1-y^{\prime}\right)}{(x-y)^{2}} \Rightarrow y^{\prime}=\frac{3 x^{2}(x-y)^{2}+2 y}{2 x}
$$

Alternative: rewrite equation as $x^{4}-x^{3} y=x+y$ to avoid having to use the Quotient Rule, if desired. Now differentiate with respect to x :
$4 x^{3}-3 x^{2} y-x^{3} y^{\prime}=1+y^{\prime} \Rightarrow 4 x^{3}-3 x^{2} y-1=x^{3} y^{\prime}+y^{\prime}=\left(x^{3}+1\right) y^{\prime} \Rightarrow y^{\prime}=\frac{4 x^{3}-3 x^{2} y-1}{x^{3}+1}$.

5 Implicit differentiation gives

$$
y^{5 / 2}+\frac{5}{2} x y^{3 / 2} y^{\prime}+\frac{3}{2} x^{1 / 2} y+x^{3 / 2} y^{\prime}=0
$$

and so

$$
y^{\prime}=-\frac{y^{5 / 2}+\frac{3}{2} x^{1 / 2} y}{x^{3 / 2}+\frac{5}{2} x y^{3 / 2}}=-\frac{2 y^{5 / 2}+3 x^{1 / 2} y}{2 x^{3 / 2}+5 x y^{3 / 2}}
$$

At the point $(x, y)=(4,1)$ we have

$$
y^{\prime}=-\frac{2(1)^{5 / 2}+3(4)^{1 / 2}(1)}{2(4)^{3 / 2}+5(4)(1)^{3 / 2}}=-\frac{2+3(2)}{2(8)+5(4)}=-\frac{8}{36}=-\frac{2}{9},
$$

which is the slope of the tangent line. Equation of tangent line is therefore

$$
y-1=-\frac{2}{9}(x-4) \Rightarrow y=-\frac{2}{9} x+\frac{17}{9} \quad \text { or } \quad 2 x+9 y=17
$$

6 With b and h the base and height of the triangle, respectively, the area is $A=\frac{1}{2} b h$. Differentiating with respect to time t yields

$$
\begin{equation*}
\frac{d A}{d t}=\frac{1}{2}\left(b \frac{d h}{d t}+h \frac{d b}{d t}\right) . \tag{1}
\end{equation*}
$$

When area is $A=150 \mathrm{~cm}^{2}$ and height is $h=12 \mathrm{~cm}$ we find the base to be $b=2 A / h=25 \mathrm{~cm}$. Putting all known quantities into (1) gives

$$
2=\frac{1}{2}\left(25(-1)+12 \frac{d b}{d t}\right)
$$

or $d b / d t=2 \frac{5}{12} \mathrm{~cm} / \mathrm{min}$.

7 The ground, wall, and ladder form a right triangle with hypotenuse of length 13. If x is the distance between the wall and the foot of the ladder, and y is the distance between the ground and the top of the ladder, then $x^{2}+y^{2}=13^{2}$. Both x and y are functions of time t, and so differentiating with respect to t yields

$$
2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)=0 \Rightarrow y^{\prime}(t)=-\frac{x(t) x^{\prime}(t)}{y(t)}
$$

We're given that $x^{\prime}(t)=0.5 \mathrm{ft} / \mathrm{s}$ for all $t \geq 0$, and of course we also have $y(t)=\sqrt{169-x^{2}(t)}$. Thus

$$
y^{\prime}(t)=-\frac{x(t)}{2 \sqrt{169-x^{2}(t)}} .
$$

Now, at the time t when $x(t)=5 \mathrm{ft}$, we obtain

$$
y^{\prime}(t)=-\frac{5}{2 \sqrt{169-5^{2}}}=-\frac{5}{24}
$$

that is, at the time t when the foot of the ladder is 5 ft from the wall, the top of the ladder is sliding down the wall at a rate of $-5 / 24 \mathrm{ft} / \mathrm{s}$.

