Math 140 Exam \#1 Key (Summer 2019)

1 We have

$$
\lim _{x \rightarrow 3^{-}}\lfloor x\rfloor=2, \quad \lim _{x \rightarrow 3^{+}}\lfloor x\rfloor=3, \quad \lim _{x \rightarrow-6^{-}}\lfloor x\rfloor=-7, \quad \lim _{x \rightarrow-6^{+}}\lfloor x\rfloor=-6, \quad \lim _{x \rightarrow 0.9}\lfloor x\rfloor=0 .
$$

2a Simply reduce the fraction first:

$$
\lim _{x \rightarrow b}\left[-(x-b)^{39}+1\right]=1
$$

2b $\lim _{w \rightarrow 1} \frac{1-w}{w^{2}-w}=\lim _{w \rightarrow 1}\left(-\frac{1}{w}\right)=-1$.
2c $\lim _{x \rightarrow 4} \frac{3(x-4) \sqrt{x+5} \cdot(3+\sqrt{x+5})}{9-(x+5)}=-\lim _{x \rightarrow 4} 3 \sqrt{x+5}(3+\sqrt{x+5})=-54$.

2d $\lim _{x \rightarrow 0} \frac{\cos x-1}{1-\cos ^{2} x}=\lim _{x \rightarrow 0} \frac{-(1-\cos x)}{(1-\cos x)(1+\cos x)}=\lim _{x \rightarrow 0} \frac{-1}{1+\cos x}=-\frac{1}{2}$.

3 Since

$$
\lim _{x \rightarrow-2^{-}} p(x)=\lim _{x \rightarrow-2^{-}}(3 x+r)=-6+r \quad \text { and } \quad \lim _{x \rightarrow-2^{+}} p(x)=\lim _{x \rightarrow-2^{+}}(x-12)=-14,
$$

the limit $\lim _{x \rightarrow-2} p(x)$ can only exist if $-6+r=-14$, which only happens if $r=-8$. Then $\lim _{x \rightarrow-2} p(x)=-14$.

4 We have

$$
\lim _{x \rightarrow 3^{-}} \frac{-5}{(x-3)^{3}}=+\infty, \quad \lim _{t \rightarrow-2^{+}} \frac{t(t-2)(t-3)}{t^{2}(t-2)(t+2)}=\lim _{t \rightarrow-2^{+}} \frac{t-3}{t(t+2)}=+\infty, \quad \lim _{\theta \rightarrow 0^{-}} \csc \theta=-\infty
$$

5 Since

$$
f(x)=\frac{x+1}{x(x-2)^{2}}
$$

f has vertical asymptotes $x=0$ and $x=2$. We find that

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f(x)=+\infty, \quad \lim _{x \rightarrow 2^{-}} f(x)=+\infty, \quad \lim _{x \rightarrow 2^{+}} f(x)=+\infty
$$

so $\lim _{x \rightarrow 2} f(x)=+\infty$ and $\lim _{x \rightarrow 0} f(x)$ does not exist.

6 Divide by the highest power of x in the denominator:

$$
\lim _{x \rightarrow \infty} \frac{4 x^{2}-7}{8 x^{2}+5 x+2} \cdot \frac{x^{-2}}{x^{-2}}=\lim _{x \rightarrow \infty} \frac{4-7 x^{-2}}{8+5 x^{-1}+2 x^{-2}}=\frac{4-0}{8+0+0}=\frac{1}{2}
$$

7 Recall that $\sqrt{x^{2}}=|x|$, so $\sqrt{x^{2}}=x$ if $x \geq 0$ and $\sqrt{x^{2}}=-x$ if $x<0$. Now, since $x \rightarrow \infty$ implies $x>0$,

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(1+x^{-2}\right)}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{x \sqrt{1+x^{-2}}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+x^{-2}}}{2+x^{-1}}=\frac{\sqrt{1+0}}{2+0}=\frac{1}{2}
$$

and since $x \rightarrow-\infty$ implies $x<0$,

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{2 x+1}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(1+x^{-2}\right)}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{-x \sqrt{1+x^{-2}}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{-\sqrt{1+x^{-2}}}{2+x^{-1}}=-\frac{1}{2} .
$$

Horizontal asymptotes are $y=\frac{1}{2}$ and $y=-\frac{1}{2}$.

8 Continuity from the left at 1 requires that $\lim _{x \rightarrow 1^{-}} g(x)=g(1)$. Since

$$
\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}-2 x\right)=-1
$$

and $g(1)=a$, we set $a=-1$ to get continuity from the left at 1 .
Continuity from the right at 1 requires $\lim _{x \rightarrow 1^{+}} g(x)=g(1)$. Since

$$
\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}(3 x+9)=12
$$

and $g(1)=a$, we set $a=12$ to get continuity from the right at 1 .

9 Let $\epsilon>0$. Choose $\delta=\epsilon / 4$. Suppose $x \in \mathbb{R}$ is such that $0<|x-8|<\delta$. Then $|x-8|<\epsilon / 4$, and since

$$
|x-8|<\frac{\epsilon}{4} \Rightarrow 4|x-8|<\epsilon \Rightarrow|4 x-32|<\epsilon \Rightarrow|(4 x-5)-27|<\epsilon
$$

we conclude that $4 x-5 \rightarrow 27$ as $x \rightarrow 8$.

10a By definition,

$$
f^{\prime}(1)=\lim _{t \rightarrow 1} \frac{f(t)-f(1)}{t-1}=\lim _{t \rightarrow 1} \frac{\sqrt{t+3}-2}{t-1}=\lim _{t \rightarrow 1} \frac{(t+3)-4}{(t-1)(\sqrt{t+3}+2)}=\lim _{t \rightarrow 1} \frac{1}{\sqrt{t+3}+2}=\frac{1}{4} .
$$

10b Slope of the tangent line is $f^{\prime}(1)=\frac{1}{4}$, so by the point-slope formula we have

$$
y-2=\frac{1}{4}(x-1) \Rightarrow y=\frac{1}{4} x+\frac{7}{4} .
$$

11 We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}=\lim _{t \rightarrow x} \frac{\frac{1}{t+2}-\frac{1}{x+2}}{t-x}=\lim _{t \rightarrow x} \frac{-(t-x)}{(t-x)(t+2)(x+2)} \\
& =\lim _{t \rightarrow x} \frac{-1}{(t+2)(x+2)}=-\frac{1}{(x+2)^{2}} .
\end{aligned}
$$

